
 

1 
 

K. M. Mosalam 

 

 

 

 

Cyber-Physical Modeling and Machine-

Learning Towards Smart Electrical 

Equipment Systems 

 
PROJECT FOR COURSE #7 

 
June 11, 2019 



 

2 
 

Preface 

 

In this project, the students are expected to be familiar with two kinds of modeling techniques, 

namely continuous modeling using finite element method (FEM) and discrete modeling using 

beam-column elements. The dynamic properties of electrical equipment and structures will be 

studied and analyzed and the structural responses will be obtained through numerical simulation 

based on the above-mentioned modeling methods. For the purpose of building a smart system, 

machine-learning (ML) and deep learning (DL) are introduced and play important roles in decision 

making. Through the use of data collected from simulation or field, ML and DL can be performed 

for identifying current health condition of the system. The specifics are outlined below, which are 

divided into four parts.  

 

Part 1: Finite Element Method 

 

Part 2: Dynamics of Structures 

 

Part 3: Data-driven Vibration-based Structural Health Monitoring 

 

Part 4: Data-driven Vision-based Structural Health Monitoring 
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Part 1: Finite Element Method (FEM) 

Finite Element Method (FEM) is a numerical approximate method for the analysis of continuous 

and discontinuous systems in engineering, applied science, and mathematics. Currently, FEM is 

the most widely employed method of analysis in civil, mechanical, aerospace engineering 

especially for stress analysis. It is also applied in fluid dynamics, thermal analysis, etc. The main 

advantage of FEM is that it can be applicable to either continuous (continuum) or discontinuous 

(frames, networks) systems or to combination of them, particularly when they are subjected to 

complex boundary conditions where closed form solutions are not available. 

 

1.1 Rayleigh Procedure 

Since FEM falls into the scope of approximate method, the principle of virtual displacement (PVD) 

and minimum potential energy (both are discussed in the lectures) provide the foundation for the 

approximate solution. Herein, we will go through the basic Rayleigh procedure which provides 

the foundation of the FEM foundation: 

1. Assume an admissible form of the solution with one unknown parameter. 

2. Apply PVD to obtain the best estimate of the exact unknown solution, e.g., displacement. 

3. Approximate solution satisfies governing equation in an average (weak) sense. 

Let us consider the real problem in the electrical system. The high voltage switch, with the 

porcelain insulator shown in Figure 1(a), is one of the components in this system, and it may 

experience several types of loads, e.g., gravity, wind, earthquake, or thermal. Now, suppose we 

can simplify it as a rod or a cantilever with total height 𝐻 in Figure 1(b), and then convert the 

loading as a distributed load, 𝑝(𝑥), along its height, thus we can compute the displacement and 

axial force for each section along its height as a function of 𝑥. As mentioned in the lectures, for 

such simplified analytical model, we can solve it with exact resolution, but now it is time to use 

the Rayleigh procedure to approximate the solution and compare the results to the exact one. 

 
 

(a) Real insulator (b) analytical model 

Figure 1. Illustration of converting real insulator to a simplified analytical model considering 

gravity loading only 

 

From preliminary analysis, we can obtain the strong form as follows: 
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𝑑𝑃(𝑥)

𝑑𝑥
+ 𝑝(𝑥) = 0 (1.1) 

Several compatibility and material properties can be listed as: 

𝜀(𝑥) =
𝑑𝑢

𝑑𝑥
 (1.2) 

𝜎(𝑥) = 𝐸 ∙ 𝜀(𝑥) (1.3) 

𝑃(𝑥) = 𝐸𝐴
𝑑𝑢

𝑑𝑥
 (1.4) 

Now, given a uniform load case, 𝑝(𝑥) = −𝑝0, according to the strong form, we obtain the 

exact solution for both displacement 𝑢(𝑥) and axial force 𝑃(𝑥) under this case. 

𝑢(𝑥) = −
𝑝0𝐻2

𝐸𝐴
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𝑃(𝑥) = 𝑝0𝐻 ((
𝑥

𝐻
) −

1

2
) (1.6) 

 

Milestone 1: 

1. Follow a similar procedure as in the lectures’ slides, and derive the weak form, where we 

assume the trial function as �̅�(𝑥) = 𝑐 (𝑥 +
𝐻

2
), 𝑐 is a constant to be determined. Be careful 

with the origin of 𝑥 axis. 

2. Plot displacement 𝑢(𝑥) and axial force 𝑃(𝑥) for both the approximate and exact solutions 

and discuss the comparison. 

3. Repeat (1) and (2) by using Rayleigh-Ritz method including 2 terms of (𝑥 +
𝐻

2
)  and 

(𝑥 +
𝐻

2
)2. 
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1.2 The Finite Element Approximation 

Rayleigh procedure gives the sense of approximation, now in this section we will develop a better 

insight into FEM. In the FEM, the domain and boundary of a structure are subdivided into a 

number of elements connected by nodes, Figure 2. Subsequently, the body forces, traction BC’s, 

and displacement BC’s are specified for the structures. Finally, specified concentrated forces are 

applied at nodes. 

 

 

Figure 2. Subdividing the domain and prescribing the boundary conditions in the FEM 

 

   

(a) Real insulator with varying cross-section (b) Analytical model 

Figure 3. Illustration of insulator with varying cross-section and its analytical model 

 

In the real application, there exist several variations of the insulator post due to design 

requirements, i.e., rendering the insulator with varying cross-section, as shown in Figure 3(a). 

Similar to milestone 1, the real structure can be converted into a simplified analytical model, Figure 

x

Dtop= 15

y

Dbottom= 30
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3(b), where we also convert the fixture at the top of the insulator to a concentrated compression 

force. In the lectures, one regular cantilever beam is analyzed with FEM using structural analysis 

library FEDEASLab 1  as a custom toolbox in Matlab, which is developed at University of 

California, Berkeley. Herein, students are expected to follow similar steps to the lectures’ problem 

and form the FE model for this varying cross-section insulator. 

 

Milestone 2: 

In this part of the project, we provide the starter code Milestone2.m in FEDEASLab, in the 

part1_FEM folder, students are expected to: 

1. Implement the code for structural modeling, i.e., define coordinate for each node. Shown 

in Figure 3(b), the insulator’s diameter of the idealized circular cross-sectional areas at the 

top and bottom as 15, and 30, respectively. The total height is 100. Note that all unites are 

consistent and be careful with the origin of 𝑥 and 𝑦 axes. 

2. Create the mesh of the plane-stress problem with Constant Stress Triangular (CST) 

elements treating the circular section as an equivalent square for simplicity. Set up the mesh 

generation with the Create_Block function in CantileverBeamwCST.m in terms of 𝑚 

elements over height and 𝑛 elements over width, where at least three combinations of 

(𝑚, 𝑛) need to be checked: (a) 𝑚 = 10 and 𝑛 = 2; (b) 𝑚 = 20 and 𝑛 = 4; and (c) 𝑚 =
80 and 𝑛 = 8. The mesh configurations are shown in Figures 4(a), (b) and (c), respectively. 

3. Compare the results for the above-mentioned mesh configurations. How does the 

displacement and stresses change and how sensitive are they to the mesh refinement?  

   

(a) 10 × 2 mesh (b) 20 × 4 mesh (c) 80 × 8 mesh 

Figure 4 Mesh configurations for three combinations 

  

                                                 
1To be provided as a zip file to the students. 
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Part 2: Dynamics of Structures 

In the first part of this capstone project, we use FEM to investigate the mechanical properties of a 

single component in the electrical system of the high voltage switch. For the purpose of designing 

and integrating a smart system, in this part of the capstone, a support structure, one-story 3D braced 

steel frame, which holds the insulator post will be analyzed through its dynamic properties. 

Moreover, as an extension of this simple support structure, which can be reasonably modeled in 

the lateral direction as a single-degree of freedom (SDOF) system, the dynamic properties of a 3-

story steel frame, which is thought as multi-degree of freedom (MDOF) system will be explored. 

 

2.1 SDOF System 

According to CIEE Electric Grid Research report (Mosalam et al., 2012), a shaking table test of a 

supporting structure with multiple insulators was performed, where the one-story support structure 

will be studied in this part of the capstone project, Figure 5. 

 

 

(a)  (b) 

Figure 5 (a) Insulators are set on one-story steel frame (support structure). (b) Numerical model 

of the support structure. 
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Figure 6 SDOF idealization 

Since the support structure is one-story steel frame, it can be idealized as a SDOF system with 

equivalent stiffness and mass making use of some reasonable assumptions, Figure 6. According to 

the report (Mosalam et al., 2012), the support structure is fixed at the bottom, two conditions are 

considered with respect to including/excluding brace, and comparisons between different damping 

ratios are discussed. These factors influencing the basic dynamic properties of this SDOF system 

will be investigated in following milestone. 

 

Milestone 3: 

Since two conditions are considered, equivalent stiffness values for the support structure with and 

without braces are 36,400 𝑘𝑁/𝑚 and 5,240 𝑘𝑁/𝑚, respectively. Neglecting the weight of the 

braces, the mass of the support structure can be taken as 8 ton. In this part of the project, we provide 

the basic information of the SDOF system, students are expected to: 

1. Compute the natural period and frequency for both structures with and without braces. 

2. Considering damping ratios 𝜉 of 1%, 3% and 5%, repeat step (1). 

3. Compare and discuss results in (1) and (2) for the two systems. 

  

IdealizationIdealization
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2.2 MDOF System 

Now, let us consider the multi-degree of freedom (MDOF) system. The structure we will study is 

a 3-story, 3-bay, tension-only concentrically braced beam-through frame (TCBBTF) (Chen et al., 

2018), Figure 7. The experiment of this steel frame was conducted in the State Key Laboratory of 

Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. 

  

(a) General view (b) Plan layout (Dim. in mm) 

Figure 7. 3-story tension-only concentrically braced beam-through frame (TCBBTF). 

  

(a) Braced frame (Dim. in mm) (b) Unbraced frame (Dim. in mm) 

Figure 8. Two types of frames in the TCBBTF system 

For simplicity, in this capstone project, we will only explore specific single frames as part of 

the whole system, shown in Figure 8, where (a) is the braced frame in the Y direction, and (b) is 

the unbraced frame in the X direction. This idealization converts the problem from 3D to 2D, 

which can be solved by the material discussed in the lectures. Neglecting the small weight of the 

braces, the mass for each frame shown in Figure 8 are: 8.625 ton for the first floor, 8.625 ton for 

the second floor, and 5.875 ton for the third floor.  
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Milestone 4: 

In this part of the project, we provide the starter code in FEDEASLab, students are expected to: 

1. Build the numerical model for both braced and unbraced frames in Figure 8 via filling the 

corresponding geometric parameters in the starter code. Plot the structure with numbering, 

where you can simply obtain this via running the start code after implementation. 

2. Assign the mass to each node of the frame. It is to be noted that the mass per node for one 

specific floor is approximately equal to the story mass divided by the number of nodes in 

this story. 

3. Determine the natural (first) frequencies and periods for both braced and unbraced frames. 

4. Select 3 ground motion records including earthquake record number 14 (14.txt) in the 

Motions folder, and then run dynamic time history analysis. 

5. Plot the deformed shape of the structures output by the code. 

6. Plot the acceleration history and displacement history of each story from the *.mat data file 

output by the code. 

7. Comment on the differences in your results in items (3) to (6) about for the two cases of 

braced and unbraced frames. 

 

Once completing the above steps, you have the necessary key information to simulate the time 

series data, i.e., acceleration and displacement for each story of the framed structure. If the 

numerical model is well-established, these structural responses will be close to the real 

situation under the same loading and boundary conditions. Thus, with such tool we can obtain 

as much data as needed, which can be used for data-driven structural health monitoring with 

machine learning. 
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Part 3: Data-driven Vibration-based Structural Health Monitoring 

Structure health monitoring (SHM) has become an important topic in civil, mechanical and 

aerospace engineering in the last few decades, especially in structural damage detection. Several 

approaches and damage criteria were developed for SHM and referred to as vibration-based 

damage detection. They received considerable attention in the context of statistical pattern 

recognition, which includes the following steps: 1) operational evaluation, 2) structural data 

collection, 3) damage sensitive features extraction, and 4) statistical model development of 

classification. Based on the prevailing concept of performance-based engineering (PBE), 

qualifying uncertainties and developing empirical fragility functions according to this damage 

classification are expected to be natural future extensions of the above four steps. Since the turn 

of this century, time series (TS) modeling of vibration signals using family of autoregressive (AR) 

models was shown to be effective in damage detection and has been used to capture damage 

features in structures. Past studies using AR series models can be grouped into two major 

categories: i) coefficient-based, and ii) residual-based, where the former uses the coefficients of 

fitted model as damage feature, and the latter identifies damage through measurement of the 

residuals computed from difference between actual data and fitted data. With the increasing trend 

of machine-learning (ML) tools, automated structural damage recognition is becoming popular 

and attracting many researchers. 

In this part of the capstone, students will learn the basic properties of TS, i.e., autocorrelation, 

stationarity, then fit the TS through a family of autoregressive models making use of these 

properties. Finally, we will introduce the algorithm of an end-to-end framework namely ARIMA-

ML, to be discussed later, which combines TS modeling and ML classification together, briefly 

discussed in the lectures but explained in details in the following sections, to automatically select 

damage features and perform damage classification. 

 

3.1 Basics of Time Series 

In the time series analysis, several properties are important, e.g., stationarity, autocorrelation, 

partial autocorrelation. In this section, we will briefly go through them making use of the notation: 

𝑥 is one TS signal with duration 𝑇, and 𝑡 and 𝑠 are two particular time steps in this signal with 

values expressed as 𝑥𝑠 and 𝑥𝑡. 

 

3.1.1 Autocorrelation 

Autocorrelation2, also known as serial correlation, is the correlation of a signal with a delayed copy 

of itself as a function of delay. Informally, it is the similarity between observations as a function 

of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding 

repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the 

missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in 

signal processing for analyzing functions or series of values, such as time domain signals. 

Before defining the autocorrelation function (ACF), we introduce the autocovariance function, 

𝛾(𝑠, 𝑡), which is also known as second moment product for all 𝑠 and 𝑡 with mean values 𝜇𝑠 and 𝜇𝑡 

at these respective times (note that 𝐸 is the expectation operator): 

𝛾(𝑠, 𝑡) = 𝑐𝑜𝑣(𝑥𝑠, 𝑥𝑡) = 𝐸[(𝑥𝑠 − 𝜇𝑠)(𝑥𝑡 − 𝜇𝑡)] (3.1) 

                                                 
2https://en.wikipedia.org/wiki/Autocorrelation 

https://en.wikipedia.org/wiki/Autocorrelation
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The autocovariance function measures the linear dependence between two points on the same 

series observed at different times. Then, the ACF is defined as a normalized version of the 

autocovariance function: 

𝜌(𝑠, 𝑡) =
𝛾(𝑠, 𝑡)

√𝛾(𝑠, 𝑠) 𝛾(𝑠, 𝑠)
 (3.2) 

The ACF defines the relationship of two points with a measure of association between −1 and 1. 

 

3.1.2 Partial autocorrelation 

Partial autocorrelation function3 (PACF) gives the partial correlation of a stationary time series 

with its own lagged values, regressing the values of the time series at all shorter lags. It contrasts 

with the ACF, which does not control for other lags. This function plays an important role in data 

analysis aimed at identifying the extent of the lag in an autoregressive model. 

As for the TS 𝑥, PACF is defined as the correlation between 𝑥𝑡 and 𝑥𝑡+𝑘 after removing the 

effect of the intervening variables 𝑥𝑡+1, 𝑥𝑡+2, …, 𝑥𝑡+𝑘−1. Consider predicting 𝑥𝑡 based on a linear 

function of the intervening variables 𝑥𝑡+1, 𝑥𝑡+2, …, 𝑥𝑡+𝑘−1, say, �̂�𝑡 = 𝛽1𝑥𝑡+1 +  𝛽2𝑥𝑡+2 + ⋯ +
𝛽𝑘−1𝑥𝑡+𝑘−1, with 𝛽’s chosen to minimize the mean square error of prediction. If we assume that 

𝛽’s have been so chosen and then think backward in time, it follows from stationarity that the best 

predictor of 𝑥𝑡+𝑘 based on the same 𝑥𝑡+1, 𝑥𝑡+2, …, 𝑥𝑡+𝑘−1, the predicted �̂�𝑡+𝑘, can be formulated 

as �̂�𝑡+𝑘 = 𝛽1𝑥𝑡+𝑘−1 + 𝛽2𝑥𝑡+𝑘−2 + ⋯ + 𝛽𝑘−1𝑥𝑡+1. 

The PACF at lag 𝑘 is then defined to be the correlation between the prediction errors; that is: 

𝜙𝑘𝑘 = 𝑐𝑜𝑟𝑟(𝑥𝑡+𝑘 − �̂�𝑡+𝑘, 𝑥𝑡 − �̂�𝑡 ) 
= 𝑐𝑜𝑟𝑟(𝑥𝑡 − 𝛽1𝑥𝑡−1 −  𝛽2𝑥𝑡−2 − ⋯ − 𝛽𝑘−1𝑥𝑡−𝑘+1,

𝑥𝑡+𝑘 − 𝛽1𝑥𝑡+𝑘−1 − 𝛽2𝑥𝑡+𝑘−2 − ⋯ − 𝛽𝑘−1𝑥𝑡+1 ) 

(3.3) 

This coefficient is called partial autocorrelation at lag 𝑘 (𝑘 ≥ 2). 

 

3.1.3 Stationary Time Series 

A stationary time series is one whose statistical properties, e.g., mean, variance, and 

autocorrelation are constants over time. Most statistical forecasting methods are based on the 

assumption that the time series can be rendered approximately stationary (i.e., “stationarized”) 

through the use of mathematical transformations. In statistics, the stationarity will be defined in 

two ways, strictly stationary and weakly stationary. Usually strictly stationary is too strong and 

hard to satisfy for most applications. Thus, we will only introduce and use weakly stationary and 

just refer to it as “stationary” (for simplicity) in the following text. 

A weakly stationary TS,  𝑥𝑡, is a finite variance process such that: 

1. the mean value function, 𝜇𝑡, is constant and does not depend on time 𝑡. 

2. the autocovariance function, 𝛾(𝑠, 𝑡), depends on 𝑠 and 𝑡 only through their differences 

or lag |𝑠 − 𝑡|. 
Many models and properties are required for a stationary TS, thus checking stationarity of the test 

TS is important. There are many ways to do so, but in this part of the capstone, we will simply 

introduce the Augmented Dickey-Fuller (ADF) test (Fuller, 2009). ADF test is widely used in 

statistics and econometrics, whose null hypothesis is the presence of a unit root in the TS signal 

                                                 
3https://en.wikipedia.org/wiki/Partial_autocorrelation_function 

https://en.wikipedia.org/wiki/Partial_autocorrelation_function
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indicating the non-stationarity, and the alternative hypothesis is test-dependent that is usually the 

occurrence of stationarity or trend-stationarity. In this part of the capstone, we define the null 

hypothesis as a unit root of a univariate TS, and the alternative hypothesis is stationarity. If 𝑝-

value (calculated probability) obtained by the ADF test on a TS signal is less than 0.05, the null-

hypothesis is rejected and this indicates the stationary condition. 

 

3.2 Autoregressive Model 

In classical TS regression models, the relationship between different variables are established 

through regression analysis and then the links between different target observations are evaluated. 

autoregressive (AR) series model is a family of regression models used for general TS problems, 

which includes models for AR, moving average (MA), autoregressive moving average (ARMA), 

ARMA with exogenous (ARX), etc. However, there are some drawbacks limiting the use of AR 

series modeling in practice. The most notable is the requirement of stationary input. Such strong 

assumption is usually hard to achieve in real engineering applications, e.g., in SHM, where TS 

data (i.e., vibration signals) collected from sensors are usually non-stationary. Thus, elaborate data 

preprocessing and stationarity checks are inevitable before modeling, but these methods lack 

uniformity and systematical pipeline, and they may still not guarantee stationarity, i.e., 

preprocessing procedures like segmenting, de-trending, de-nosing, etc. may not work in some 

cases. However, there is one promising AR series model, namely the autoregressive integrated 

moving average (ARIMA) model. The ARIMA model is developed by performing several 

integrations (differencing) towards TS, which is shown to be quite effective to achieve stationarity 

compared to other traditional data processing methods in some cases (Shumway & Stoffer, 2011). 

Thus, ARIMA can be an alternative way to relieve such strong assumption compared to other AR 

series models. For more details about AR series models, refer to (Shumway & Stoffer, 2011). 

In this capstone, details about ARIMA modeling are introduced and applied. ARIMA acts as 

a combination of both AR and MA models with several integrations, where AR aims to determine 

the dependent relationship of an observation with order 𝑝 of lagged observations, namely AR(𝑝). 

On the other hand, MA is used to determine the dependent relationship of the observation with 

order 𝑞  of observed white noise error terms, namely MA( 𝑞 ) (Shumway & Stoffer, 2011). 

Moreover, using order 𝐼 to represent the times of integration after fitting an ARMA(𝑝, 𝑞) model, 

the full definition of the ARIMA model can be expressed as ARIMA(𝑝, 𝐼, 𝑞). From the perspective 

of implementation, we do not perform integration, instead we perform differencing of raw TS 

multiple times first and then fitting an ARMA model. If a TS, expressed as {𝑋𝑡}, is said to satisfy 

the stationarity condition after the 𝑑th differencing of a raw TS, expressed as {𝑌𝑡}, denoted as 

{𝑋𝑡} =  ∇𝑑{𝑌𝑡}, and {𝑋𝑡} also follows an ARMA(𝑝, 𝑞) model, then it can be said that {𝑌𝑡} follows 

an ARIMA(𝑝, 𝑑, 𝑞) model. Thus, we have, 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 + ⋯ + 𝛼𝑝𝑋𝑡−𝑝 + 𝑒𝑡 − 𝛽1𝑒𝑡−1 − 𝛽2𝑒𝑡−2 − ⋯ − 𝛽𝑞𝑒𝑡−𝑞 (3.4) 

where 𝛼𝑖 and 𝛽𝑖 represent coefficients for the AR and MA parts, respectively, and 𝑒𝑡 represents 

the error (noise) at time step 𝑡. 

As a parametric model, the key factor in using ARIMA to fit-well a TS is to find the reasonable 

orders 𝑝, 𝑑  and 𝑞 . In the usual applications, taking 𝑑 = 1 or 2 can achieve reasonable results 

(Shumway & Stoffer, 2011). It is not suggested to use high order differencing, since it 
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compromises the physical meaning and increases the risk of overfitting. As for orders 𝑝 and 𝑞, 

they can be roughly estimated through the stationary TS properties, namely the autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Shumway and Stoffer (2011) 

summarized the behavior of the ACF and PACF for specific AR series models as follows: 1) TS 

suitable for AR(𝑝) models is observed as ACF tails off and PACF cuts off after lag 𝑝; 2) TS 

suitable for MA(𝑞) models is observed as ACF cuts off and PACF tails off after lag 𝑝; and 3) TS 

suitable for ARMA(𝑝, 𝑞) models is observed as both ACF and PACF tails off after order 𝑝 and 𝑞, 

respectively. Thus, in the implementation of ARMA, it is necessary to obtain the ACF and PACF 

of the TS first, then find the cut-off and tail-off lags, and finally determinate the order empirically 

based on these lags. There are other approaches to determine the model specifications such as 

using Akaike’s information criterion (AIC), or Bayesian information criterion (BIC), expressed in 

the two equations below. It is noted that most of the work of Nair et al. (2006) and Noh et al. (2007) 

were based on using AIC to determine the optimal order for the AR series model.  

AIC = 2𝑘 − 2ln(�̂�) (3.5) 

BIC = 𝑘ln(𝑛) − 2ln(�̂�) (3.6) 

where 𝑛 is the number of samples, 𝑘 is the number of coefficients in the model, and �̂� is the 

maximum value of the likelihood function for the model. 

To avoid both over- and under-fitting for the AR series modeling, we can diagnose such 

undesired performances by residuals checks. This is true because the residuals (difference between 

the ground truth and the fitted data) should share similar properties to the white noise, such as 

independent and identical distribution (i.i.d), zero means, and common values of standard 

deviation (Cryer et al., 1991). Several statistical methods to examine the residuals exist including 

checking their standardized scale by standardization plot, their normality by quantile-quantile (Q-

Q) plot, and their autocorrelation by ACF plot. 

 

3.3 Smoothing-Segmentation-Normalization-Differencing (SSN-D) 

In the procedure of signal processing, data cleaning or preprocessing is always the first essential 

step. Usually, moving average operation can be applied first to smooth the raw signals, which is 

helpful to get rid of some noisy data points. Considering the difficulties in maintaining the 

stationarity for a long-round TS signal and to have a better performance in achieving the 

stationarity condition, segmentation is adopted, where local stationarity is much easier to achieve 

for a short time period. Similarly, strong nonlinearity of the entire TS signal can also be relieved 

through fitting local linear model on each segment. On the other hand, due to different loading 

conditions, the scale of the TS collected by several sensors may vary from one sensor to another. 

Thus, normalization (standardization) may resolve this issue. Moreover, Nair et al. (2006) and Noh 

et al. (2007) indicate the effectiveness of performing segmentation and normalization. 

Different from traditional segmentation, in this capstone, we set the principle for segment 

selection to maintain enough information for the structural stiffness under consideration. Thus, 
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each segment should contain at least one reciprocating cycle, such as the three sample segments 

in Figure 9. According to the sampling frequency (256 Hz) of the sensors, using 200 data points 

as the segmentation size should be sufficient in this capstone and we can discard the segments that 

violate this principle. Similar to the traditional way, the sliding window method is adopted, and in 

the numerical experiments, we consider the two patterns of non-overlapping and overlapping. 

Another advantage of segmentation is to greatly increase the amount of data especially when 

overlapping is adopted, which is beneficial for data-driven ML algorithms. 

To minimize the variance of local time period, instead of normalizing the whole signal at one 

time, the signal is normalized within each segment, where 𝑌 represents a collection of TS signal 

records and 𝑌𝑗
𝑖  is the 𝑗 th segment in the 𝑖th record. The normalized signal �̃�𝑗

𝑖  is obtained by 

subtracting the mean of 𝑌𝑗
𝑖 and then dividing by the standard deviation (std) of 𝑌𝑗

𝑖 as follows: 

�̃�𝑗
𝑖 = (𝑌𝑗

𝑖 − 𝑚𝑒𝑎𝑛(𝑌𝑗
𝑖)) 𝑠𝑡𝑑(𝑌𝑗

𝑖)⁄  (3.7) 

After normalization, 𝑑  times of differencing operations are conducted for each segment. The 

selection of 𝑑 is based on demand and vary between cases. 

 

 

Figure 9. Segmentation operation using sliding window for one sample TS signal 

 

Milestone 5: 

In this part of the project, the students are expected to be familiar with and use functions of time 

series library in Matlab, i.e., arima(), adftest(), autocorr(), etc. to examine the properties of one 

sample TS signal we will provide, which is a real acceleration data collected from shaking table 

test discussed with relevance to milestone 4. Specific steps are as follows: 

1. Compute the ACF, PACF for the sample TS signal (show plots).  

2. Implement the code of SSN-D preprocessing, where sliding window method should have 

the options for both overlapping and non-overlapping patterns. Check stationarity for each 

segment and discard non-stationary ones. 

3. Repeat (1) for first 10 segments generated by non-overlapping pattern and show plots. 

4. Combine observed results in the first 10 segments with empirical principle for ARMA 

model selection and select 3 possible combinations of order (𝑝, 𝑞). 

5. Use arima() function in Matlab to fit the first 10 segments with proper order (𝑝, 𝑞), and 

check the residuals based on the criteria introduced in the lectures.  

Sliding window

Segment #1 Segment #2 Segment #3
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3.4 Machine Learning in Classification 

Machine-learning (ML), founded on pattern recognition as one mutual subject in Computer 

Science and Statistics, has already undergone substantial development over the past twenty years 

(Bishop, 2006). Nowadays, the implementation of ML in SHM pattern recognition can be thought 

of as a mature subject with plenty of well-developed and efficient algorithms (Farrar, 2012). ML 

has three major categories: unsupervised learning, supervised learning, and reinforcement learning 

based on data characteristics. In this capstone, only supervised learning will be applied. The 

supervised learning uses well-labeled data based on domain knowledge to analyze the input data 

and produce an inferred mapping function. Finally, the new unseen data sample can be assigned 

labels according to this mapping relationship. In the implementation of ML to SHM, a supervised 

learning algorithm is used to learn hidden relationships between some features extracted from the 

data and their corresponding damaged state of the structure. 

An early exploration in this direction was performed by de Lautour & Omenzetter (2006). They 

numerically simulated a simple 3-story shear building and used coefficients fitted from floor 

acceleration by AR model as the input feature of the neural network. The results indicate the 

success in detecting and locating the damage of this simple structure. This preliminary work 

inspired the current capstone to develop an end-to-end detection framework/pipeline by ARIMA 

modeling in conjunction with ML classifier. In this section, three well-known ML classification 

algorithms are introduced, namely logistic regression (LR), neural network (NN), and support 

vector machine (SVM). 

 

3.4.1 Logistic regression (LR) 

The LR is a technique applied to problems with binary response variable, y, i.e., the number of 

available categories (cardinality) is two, with conditional probability P(y = f|x). In that case, a 

logit model is fitted between the input features 𝑥 and the binary response (Truett et al., 1967). The 

formulation of LR is described as follows: 

ln (
𝑃(𝑦 = 𝑓|𝑥)

1 − 𝑃(𝑦 = 𝑓|𝑥)
) = 𝜃𝑥 (3.8) 

where 𝜃𝑥 is a linear combination of the features and 𝑓 is the damage class. The optimization 

problem by which θ is determined can be expressed as follows: 

𝑚𝑖𝑛
𝜃

{−
1

𝑚
× [∑ {𝑦𝑖 ln[ℎ(𝜃𝑥𝑖)] + (1 − 𝑦𝑖) ln [1 − (ℎ(𝜃𝑥𝑖))]}

𝑚

𝑖=1

]} (3.9) 

where ℎ(𝜃𝑥𝑖) = 1 (1 + e−𝜃𝑥𝑖
)⁄  and 𝑚 is the number of samples. 

When the number of categories (cardinality) is more than two, LR can still be applied for 

classification using an approach called “one vs all.” For example, if we define four damage 

categories, namely “undamaged,” “minor,” “moderate,” and “major,” which are assigned 

categories 0, 1, 2, and 3, respectively, in this approach, one damage class is labeled as 1 and all 

the rest are labeled as 0 for training and the process is repeated for each class. Using Equation 3.8 

and the training set, the coefficient vectors 𝜃 are evaluated. The LR algorithm can help find the 

linear boundary that separates each damage category from the other categories. 
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3.4.2 Neural Network (NN) 

The NN is the most commonly used ML algorithm for its ability to handle nonlinear complex 

input-output relationships. A typical NN contains connected units or nodes known as artificial 

neurons. The network comprises of three main layers: the input layer, the hidden layer, and the 

output layer. The hidden layer can have multiple layers of its own. This layer finds the relationship 

between the input and the response variable. However, unlike LR, it can find the linear as well as 

the nonlinear boundary that separates each class from the remaining classes. For example, the 

feedforward network architecture is applied with the vector of damage features as the input layers 

and 2 hidden layers with the number of neurons equals 𝑛, and the output layer consists of the four 

damage states as shown in Figure 10(a). 

 
Figure 10. (a) Feedforward NN with 2 hidden layers and 𝑛 neurons. (b) SVM classification of 

four classes with six distinct boundaries. 

 

3.4.3 Support Vector Machine 

The SVM is another common classical ML algorithm used for classification. SVM is based on the 

statistical learning theory, so it finds the optimum boundary (linear and nonlinear) separating the 

data of different classes (clusters). SVM maps the space of the original variables into an unknown 

high-dimensional feature space, where the data are linearly separable. In this space, the classes are 

separated through hyperplanes, to which correspond nonlinear boundaries in the original space, 

Figure 10(b). 

 

3.5 ARIMA-ML Algorithm 

To some degree, SHM for damage detection can be seen as a classification problem, which is 

within the scope of supervised learning. Therefore, in this capstone we aim to integrate both TS 

modeling and ML together for such purpose, namely ARIMA-ML algorithm (Gao et al., 2019). 

Figure 11 illustrates the basic framework of integrated ARIMA-ML by first passing raw TS data 

into SSN-D pre-processing module and stationarity check to generate the desired segments, then 

applying ARMA model to act as a damage feature extraction module, and finally feeding these 

features into the classification module, where multiple classification ML algorithms with a voting 

mechanism for decision making regarding the damage state identification or pattern recognition. 

The details of each module are described in (Gao et al., 2019). 
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In summary, with the input of one TS signal and a target TS model, the ARIMA-ML 

framework automatically processes and analyzes it with output of the corresponding label, i.e., 

damage state or damage pattern, and no human-interacted operations need to be performed during 

this procedure. Thus, such characteristic provides the convenience for practical deployment. It is 

noted that the desired input for this algorithm is the structural acceleration response collected 

before and after the possible damaging loading scenarios, e.g., due to a large earthquake, and such 

responses can be excited from small turbulences or white noise loadings of the structures. The 

intuition behind this definition is that the damage state or pattern occurring in the structure is 

determined except during the damaging loading stage, and small excitations, i.e., white noise with 

low amplitude, do not cause further damage to the structure, i.e., it remains in the linear range even 

though the structure may have a degraded stiffness compared to its undamaged state. Such 

condition is desired for AR series model, and the issues of strong non-stationarity and nonlinearity 

are significantly relieved compared to the damaging loading state. 

 

 

Figure 11. Framework of the ARIMA-ML algorithm 

 

Milestone 6: 

In this part of project, training data, a matrix form of damage feature and labels will be provided, 

which are extracted from real shaking table test of the 3-story steel frame mentioned in Section 

2.2. According to (Gao et al., 2019), these features are extracted from ARIMA order (𝑝, 𝑞) pairs, 

where we used 𝑝 = 7, 𝑞 = 6, for each segment from real experiments, and students already have 

the sense of such feature extraction in milestone 5. The classification task designed here is a binary 

case to identify whether the structure is damaged (D) or undamaged (UD). Moreover, in this part, 

the students are allowed to use ML library in Matlab instead of implementing ML algorithm by 

themselves. However, it is suggested to try to do so for an Extra Credit (Bonus) awarded for self-

implementation. 

The details of the assignment are listed below: 

1. Apply LR to train the data and report on the test accuracy. 

2. Apply SVM and tune the hyper-parameters to obtain the best classification accuracy. 

3. Try NN with at least two different network designs (e.g., 2 and 3 hidden layers) and tune 

hyper-parameters (i.e., learning rate, etc.) to obtain the best classification accuracy. 

4. Compute the confusion matrix (discussed in the lectures) for all cases (LR, SVM, and NN) 

5. Compare results and submit a discussion of findings.  

…
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Part 4: Data-driven Vision-based Structural Health Monitoring 

As mentioned in the lectures, other than vibration-based SHM presented in part 3, vision-based 

approach is another important and well-studied direction in nowadays SHM area. The objective of 

vision-based SHM is to detect vision patterns, e.g., cracking, spalling, and buckling to be able to 

extract information related to damage, i.e., damage level, damage type, etc., through images and 

videos. Usually this work is performed by human or some automated algorithm, but there exist 

many drawbacks for such approach where tedious and repetitive inspection work for human and 

inaccurate detection results for automated algorithms exist. In this data explosion epoch, artificial 

intelligence (AI) and machine learning (ML) technologies are developing rapidly, especially in 

applications of deep learning (DL) in computer vision, which made giant progress in recent years. 

In addition, the objective of the implementation of ML and DL is to make computers perform 

labor-intensive repetitive tasks and also learn from past experiences with a stable and highly 

accurate procedures. Considering the difficulties in vision-based SHM, which greatly relies on 

human visual inspection and detection accuracy, it is timely to implement the state-of-art DL 

technologies in vision-based SHM applications especially in detecting health conditions of 

electrical equipment and systems and evaluate their potential benefits. 

Electrical equipment and systems require constant maintenance in order to supply constant and 

stable power, especially in urban areas. Electrical equipment systems in dense urban areas are 

complex and large scale, and often housed outdoors. Wind, precipitation, and ground motion put 

electrical equipment systems at risk of failure, especially where there are brittle electrical 

connections in the equipment. It is important to detect damage quickly, safely, and efficiently so 

that maintenance and repair can be conducted as soon as possible after an event. Slow response to 

damage can cause life safety issues, long down times, power outage, and financial losses. 

Transmission towers are an example of electrical equipment where damage must be detected and 

addressed quickly. An automatic failure detection of transmission towers can save communities 

the time and potential danger of traveling out to the field and investigation failure conditions. Thus, 

DL can be used to greatly improve the process of transmission tower maintenance and repair. 

In this part of the capstone, students are expected to use image data we provide and adopt DL 

to train the convolutional neural network (CNN) for the purpose of transmission tower failure 

detection through image. An example of a CNN framework is shown in Figure 12. 

 

Figure 12. CNN framework for transmission tower failure detection 

 

Convolution Pooling Convolution

…… … Undamaged:	0.002

Damaged:	0.998
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4.1 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN) has been at the heart of spectacular recent advances in DL. 

Compared with traditional computer vision and ML approaches, CNN no longer needs hand-

designed low-level features or so-called feature engineering where the millions of parameters 

inside a typical network are capable of learning amounts of mid-to-high level image 

representations with input data obtained from a pixel matrix (tensor). Another unique characteristic 

of deep CNN is its depth of architecture. Many well-designed CNN architectures, such as Visual 

Geometry Group (VGGNet) (Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al., 2015), 

and deep Residual Net (ResNet) (He et al., 2016) demonstrated the great performance 

improvement with substantially increasing the depth. A CNN primarily consists of two parts: 

image feature extraction using convolution layers and image classification with fully-connected 

(Fc) layers, whose input is the output of the last convolutional layer. 

 

4.1.1 Convolutional layer 

A convolutional layer extracts the features of an image using filters. A filter is a small sized matrix 

(e.g., 3 × 3 × number of image channels) that traverses the image matrix with a predetermined 

step size (called “stride”) and performs the convolutional operation between the masked image 

submatrix and the filter’s own kernel matrix, which is learned and tuned during the training process, 

shown in Figure 13. Each convolutional layer consists of multiple filters. These convolutional 

filters extract image features based on their relative locations, outputting “feature maps,” which 

are the results of the convolutional operations. Detectable features include, but not limited to, 

straight or curved edges, color patterns, or geometric combinations. As more convolutional layers 

are added, higher image features are captured, such as complex geometric patterns. 

 
Figure 13. Convolutional operation 

 

4.1.2 Fully-connected (Fc) layer 

A fully-connected (Fc) neural network is another name of neural network (NN) mentioned in 

section 3.4.2 and Figure 8(a), which is added to the end of the convolutional layers in the setting 

of CNN. By this point, high level image features are extracted and summarized in high dimensional 

feature maps, which are fed into the first Fc layer. Each neuron in an Fc layer is connected to all 

the next layer neurons; each neuron calculates and outputs the dot product between the input vector 

and its feature weights (which is learned and tuned during the training process). The last Fc layer 
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calculates the percentage that a given input feature map belongs to a certain image class through 

the Softmax function (as discussed in the lectures). 

 

4.1.3 Maxpooling layer 

A Maxpooling layer down-samples each internal feature map by traversing its filter across the 

feature map (similar to convolutional filters) and extracting the maximum entry value of the feature 

map’s submatrix masked by the filter. This is illustrated in Figure 14. 

 
Figure 14. Maxpooling operation 

 

4.1.4 Rectified Linear Unit (ReLU) 

The Rectified Linear Unit (ReLU) is an important activation function at convolutional layers. Its 

operation is simple: 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), shown in Figure 15(a). ReLU activation is crucial because 

it breaks the linear boundary between convolutional layers. Without ReLU, all convolutional 

operations are linear, which poses a problem because relative features are often nonlinear. ReLU 

greatly improves both classification accuracy and training speed. There are variations of the ReLU 

function as well, such as the LeakyReLU which does not ignore negative inputs, Figure 15(b). 

                               
(a) ReLU                                                           (b) LeakyReLU 

Figure 15. Activation function 

 

4.2 Image Dataset for Transmission Tower 

If a CNN model and DL algorithm build the skeleton of the entire project, data and dataset are the 

blood and muscle to make everything runnable. Since using DL in image-based detection in SHM 

particularly for electrical equipment, there is no open-source well-labeled and well-organized 

image dataset related the topic of this capstone. Thus, we collected images from Internet, 

preprocessed them and finalized a small dataset for exploration purposes of this capstone project. 
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The dataset for the capstone contains about 400 images of transmission tower with both 

undamaged and damaged states, shown in Figures 16(a) and (b). The total dataset is split up to two 

sets, namely training set and validation set. The DL model you will develop will be trained on the 

training set and validated on the test set. The amounts of data in each set and category are listed in 

Table 4.1. For simplicity, we treat the ratio of undamaged state and damaged state as 1:1. Therefore, 

the model should have a better accuracy over 50%, which is a random guess of a binary 

classification problem on a balanced dataset. 

 

    

    

(a) Undamaged state indicating no failure 

 

    

    

(b) Damaged state indicating failure 

Figure 16. Sample images in the dataset for both undamaged and damaged categories. 
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Table 4.1 Number of images in the training and validation sets 

Set Undamaged state Damaged state 

Training 181 181 

Validation 23 23 

 

Milestone 7: 

In this part of the project, the students are expected to be familiar with and use functions of the 

Deep Learning (DL) library in Matlab. Students will implement the code to realize transmission 

tower failure detection via images with acceptable accuracy. An example of the training procedure 

is shown in Figure 17. Specific steps are as follows: 

1. Apply the code to preprocess image data. 

2. Run the code to load image data from the dataset we will provide. 

3. Design 3 different CNN architectures based on choices of the following: 

a. Convolutional layer 

b. Fc layer 

c. Maxpooling layer 

4. Modify one of the CNN you designed in part (2) above until it can achieve over 80% 

validation accuracy on the validation set. 

5. BONUS: Implement data augmentation (as discussed in the lectures) and compare the 

modified model in part (3) above to test its performance with and without augmentation. 

 

 
Figure 17. Training procedure of CNN model through the Matlab DL library 

  



 

24 
 

References 

1. Mosalam, K. M., Moustafa, M. A., Günay, M. S., Triki, I., & Takhirov, S. (2012). Seismic performance 

of substation insulator posts for vertical-break disconnect switches. California Energy Commission 

Publication Number: CEC-500-2012. 2012 

2. Nair, K. K., Kiremidjian, A. S., & Law, K. H. (2006). Time series-based damage detection and 

localization algorithm with application to the ASCE benchmark structure. Journal of Sound and 

Vibration, 291(1), 349-368. 

3. Noh, H. Y., Nair, K. K., Kiremidjian, A. S., & Loh, C. H. (2009). Application of time series based 

damage detection algorithms to the benchmark experiment at the National Center for Research on 

Earthquake Engineering (NCREE) in Taipei, Taiwan. Smart Structures and Systems, 5(1), 95-117. 

4. Farrar, C. R., & Worden, K. (2012). Structural health monitoring: a machine learning perspective. John 

Wiley & Sons. 

5. Gao, Y., Chen Y., Mosalam, K. M., Chen Y. & Wang, W. Auto Regressive Integrated Moving 

Average–Machine Learning Approach for Damage Identification of Steel Structures. (Under 

preparation) 

6. Muin, S., & Mosalam, K. M. (2017). Cumulative absolute velocity as a local damage indicator of 

instrumented structures. Earthquake Spectra, 33(2), 641-664. 

7. Liang X., S. Muin & Mosalam K.M. (2018). Simulation-based Data-driven Damage Detection for 

Highway Bridge Systems,” Eleventh U.S. National Conference on Earthquake Engineering, Integrating 

Science, Engineering & Policy, June 25-29, 2018, Los Angeles, CA, USA. 

8. Mosalam, K. M., Alibrandi, U., Lee, H., & Armengou, J. (2018). Performance-based engineering and 

multi-criteria decision analysis for sustainable and resilient building design. Structural Safety, 74, 1-13. 

9. Cerchiello, Vania, et al. (2016). Risk of building damage by modeling interferometric time series. 2016 

IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016. 

10. Qian, Y., & Akira, M. (2008). Acceleration‐based damage indicators for building structures using 

neural network emulators.” Structural Control and Health Monitoring: The Official Journal of the 

International Association for Structural Control and Monitoring and of the European Association for 

the Control of Structures 15.6 (2008): 901-920. 

11. Lei, Y., et al. (2003). Statistical damage detection using time series analysis on a structural health 

monitoring benchmark problem.” Proceedings of the 9th international conference on applications of 

statistics and probability in civil engineering. 

12. Chen, Y., Wang, W., & Chen, Y. (2018). Full-scale shake table tests of the tension-only concentrically 

braced steel beam-through frame. Journal of Constructional Steel Research, 148, 611-626. 

13. Cryer, J. D., & Kellet, N. (1991). Time series analysis. Royal Victorian Institute for the Blind. Tertiary 

Resource Service. 

14. De Lautour, O. R., & Omenzetter, P. (2006). Detection of seismic damage in buildings using time series 

analysis and pattern recognition. In Proceedings of the 4th World Conference on Structural Control and 

Monitoring (pp. 11-13). 

15. Fuller, W. A. (2009). Introduction to statistical time series (Vol. 428). John Wiley & Sons. 

16. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. & 

Rabinovich, A. (2015), Going deeper with convolutions, in Proceedings of the IEEE International 

Conference Computer Vision & Pattern Recognition (CVPR), Boston, MA, 1–9. 

17. Simonyan, K. & Zisserman, A. (2014), Very deep convolutional networks for large-scale image 

recognition, arXiv:1409.1556. 

18. He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep residual learning for image recognition, in 

Proceedings of the IEEE International Conference on Computer Vision & Pat- tern Recognition 

(CVPR), Las Vegas, NV, 770–78. 


