
Simulate Quantum Annealing Ising Model with Conditional Generative Adversarial Network 1

Simulate Quantum Annealing Ising Model with
Conditional Generative Adversarial Network

Pengyuan Zhai1,2

1Department of Civil and Environmental Engineering, University of California, Berkeley, CA, United States

2Department of Industrial Engineering and Operations Research, University of California Berkeley, CA, United States

Abstract: This study aims to create a GAN-based Ising sim-
ulator (SQA-GAN) to produce realistic Ising states given a
target transverse field strength. The Ising state generator will
implicitly learn the data distribution from conventional Path-
integral Monte Carlo simulations for a three-dimensional
quantum annealing Ising model. We tested and compared the
SQA-GAN’s generative capabilities based on a 32×32 spin
glass system and found that (add more when all experiments
are done)...

1 Background & Motivations

Replicating complex system behaviour has been an increas-
ing challenge in the data explosion era...

Deep learning has shown great potential in learning and
describing complicated physical systems in quantum physics
and astronomical sciences (REF)...

Recent development in computer vision has revealed the
great potential of convolutional neural networks (CNNs),
which were successful in learning many body systems (REF)
and predicting phase transitions and calculating system
Hamiltonians under supervised learning frameworks...

Additionally, generative models were used to simulate nat-
ural and human behaviours through hidden Markov model,
variational autoencoders and reinforcement learning under
unsupervised learning frameworks. Generative Adversarial
Networks (GANs) learn the distribution of training data in
a zero-sum game-theoretical framework, allowing to con-
struct models to imitate realistic stochastic physical systems
(REF)...

2 Related Work

The concept of GAN was first introduced by Goodfellow
et al. (2014a), which is a generative model that generates new
data from the learned distribution. Unlike conventional DL
models, GAN consists of two networks, namely the genera-
tor and the discriminator, where the generator creates syn-
thetic data and the discriminator classifies an input sample as

“real” or “synthetic.” GAN uses adversarial training, where
each network aims to minimize the gain of the opposite side
while maximizing its own. Ideally, both the generator and
the discriminator converge to the Nash equilibrium (Good-
fellow, 2016), where the discriminator gives equal predic-
tive probabilities to real and synthesized samples. Until now,
GAN has been applied to many computer vision (CV) tasks,
e.g., fake image generation (Radford et al., 2015), image-to-
image translation (Isola et al., 2017), and medical imaging
synthesis, reconstruction, and classification (Yi et al., 2019).

Liu and Rodrigues (REF) developed an Ising simulator
built by a GAN framework to simulate the 2D Ising model
near critical temperature and verified its effectiveness in gen-
erating realistic Ising states compared to those generated by
a Monte Carlo (MC) simulation... (more previous studies to
be added)

The Ising model is often used to describe natural systems
in physics, and many optimization problems can be mapped
into physical systems described by the Ising model whose
ground states provide the solutions to the optimization prob-
lems. Examples include travel- ing salesman problem, port-
folio optimization, integer factoring, social economics net-
work, protein folding, protein modeling and statistical genet-
ics. See Irback, Peterson and Potthast (1996), Majewski, Li
and Ott (2001), McGeoch (2014) and Stauffer (2008).

3 Ising Model Monte Carlo Simulations

3.1 Classical Ising Model

In statistical physics, the Ising model is described as an en-
semble of binary spins with coupling interactions in some
lattices. For A classic 2-dimensional lattice Ising model with
n rows and m columns, there are in total b = n ∗m sites. At
each lattice site, site variable si stands for a binary random
variable indicating the spin position (pointing up or down),
i.e., si ∈ {+1,−1},∀i= 1, ...,b. The Hamiltonian of the clas-
sical Ising model is given by

Hc
I (s) =− ∑

<i, j>
Ji jsis j−∑

j
h js j (1)

2 Zhai et al.

where Ji j stands for the coupling interaction between sites i
and j, and h j describes an external magnetic field on site j.
For a given configuration s, the energy of the Ising model is
equal to Hc

I(s).
The probability of a given configuration s at a given abso-

lute temperature T follows a Boltzmann (or Gibbs) distribu-
tion

Pβ (s|T) =
e−βHc

I(s)

Zβ

,Zβ = ∑
s

e−βHc
I (s),β = (kBT)−1, (2)

where β = (kBT)−1 is the inverse temperature, where kB is
the Boltzmann constant and T is a given absolute tempera-
ture. In this work, temperature refers to kBT which is the
fundamental temperature of the system with units of energy,
and β is simply its reciprocal.

3.2 Classical Annealing

A combinatorial optimization problem can be cleverly
mapped to an Ising model, whose ground state (a config-
uration that minimizes the energy function Hc

I (s)) corre-
sponds the optimal objective. In a complex system where
exhaustively searching for the minimum is computationally
prohibitive, annealing approaches such as Simulated An-
nealing (SA) are used to probabilistically explore the search
space with repeated Markov Chain Monte Carlo (MCMC)
iterations. The Metropolis-Hastings algorithm is a popular
MCMC method that generates configuration samples (Ising
states) from the Boltzmann distribution at slowly-decreasing
temperatures.

Steps of the SA algorithm:
(1) Randomly and independently initializes the spins with

+1 and -1.
(2) At the kth sweep (one sweep is a complete update of

all spins), for spin i, attempt to flip its state, keeping other
spins unchanged. Calculated the energy change,4E(k)

i .
(3) The new state for spin i is accepted with probability

min{1,exp(−4E(k)
i /Tk)}

3.3 Quantum Ising Model

3.3.1 Quantum System Representation

Computers rely on physical systems to represent digits. Clas-
sical computers encode bits 0 and 1 by low and high volt-
ages. Analog to bits 0 and 1 in classic computation, quantum
computations rely on qubits |0〉 and |1〉. Quantum superposi-
tion allows qubits to encode ones and zeros simultaneously.
While a classical bit can only be either 0 or 1, a qubit can
be a superposition of both |0〉 and |1〉, which is realized by a
particle’s quantum spin where |0〉 and |1〉 correspond to the
up spin and down spin respectively. A superposition qubit
is ψ〉 = α0|0〉+α1|1〉, where α0 and α1 are two complex
numbers satisfying |α0|2 + |α1|2 = 1. Thus, a qubit can be
represented by a unit vector [α0,α1]

T in C2, and |0〉 and |1〉

are the orthonormal basis or the computational basis. Due to
the non-observability of qubits, we can only observe 0 with
probability |α0|2, or 1 with probability |α1|2.

The complex space increases exponentially with respect
to the number of qubits. In the case of a b-qubit sys-
tem, the computational basis takes the form |x1x2...xb〉,x j ∈
{+1,−1},∀ j ∈ {1, ...,b}, eg., when b= 2, the computational
basis are |00〉, |01〉, |10〉, and |11〉. A unit vector |ψ〉 =
[α00,α01,α10,α11]

T , with |α00|2 + |α01|2 + |α10|2 + |α11|2 =
1, |ψ〉 ∈ C22

, represents a specific superposition state of this
2-qubit system.

3.3.2 Quantum Annealing

As mentioned in Section 3.2.1, the quantum state of a b-qubit
quantum system is represented by a unit vector |ψ〉 ∈ C2b

.
The continuous time evolution of ψ(t)〉 is governed by the
famous Schrödinger Equation:

|ψ(t)〉= e−
√
−1Ht |ψ(0)〉, (3)

where the quantum Hamiltonian, Ht ∈ C2b×2b
is a time-

dependent Hermitian matrix. The possible energies of the
quantum system corresponds to the eigenvalues of the quan-
tum Hamiltonian, and the ground state is the eigenvector cor-
responding to the smallest eignvalue.

To analogously represent a quantum Ising model using the
classical Ising model idea in Section 3.1, we replace each
lattice position varible si =±1 by a Pauli matrix

σ
z
j =

(
1 0
0 −1

)
. (4)

The quantum Hamiltonian of the quantum Ising model thus
becomes:

Hq
I =− ∑

<i, j>
Ji jσ

z
i σ

z
j −∑

j
h jσ

z
j , (5)

where Ji j is the Ising coupling of lattice positions i and j,
and h j is the local field on jth lattice position. It is worth
noting that σ

z
i σ

z
j denotes a tensor product, which makes the

first term in (5) a diagonal matrix. Hq
I is thus also a diagonal

matrix (the second term of (5) is diagonal).
The eigenvalues of Hq

I are its diagonal entries, which ac-
tually corresponds all the 2b possible values of a classical
Hamiltonian Hc

I (s) with b total spins (REF). Finding the
minimal energy of the quantum Hamiltonian is equivalent to
finding the minimal energy of the classical Hamiltonian.

However, unlike the classical Ising model, an additional
transverse magnetic field orthogonal to the Ising axis is intro-
duced to drive the transitions between the up and down states
of each spin, this added field turns the system behaviour from
classical to quantum (REF). The transverse magnetic field is
governed by a quantum Hamiltonian

Hx =−∑
j

σ
x
j , (6)

Simulate Quantum Annealing Ising Model with Conditional Generative Adversarial Network 3

where σ x
j is a Pauli matrix in the x axis:

σ
x
j =

(
0 1
1 0

)
. (7)

During quantum annealing, the system evolves from
the initial Hamiltonian HX to the final target Hamiltonian
through annealing schedules A(t) and B(t), which is realized
by turning on a off magnetic fields adiabatically (as in the
D-wave quantum computer). (REF)

HD(t) = A(t)HX +B(t)Hq
I . (8)

According to the quantum adiabatic theorem, the system
tends to remain in ground states of the instantaneous Hamil-
tonian through quantum tunneling. Thus at the end of quan-
tum annealing, if the system is in a ground state of the final
Hamiltonian, an optimal solution is obtained by measuring
the system (REF):

3.3.3 Simulated Quantum Annealing

The quantum Hamiltonian’s size increases exponentially
with the number of qubits in the system. Simulating the
quantum state evolution requires to exponentiate such expo-
nentially large, time-dependent and non-commutable Hamil-
tonian matrices, which is prohibitive by classical comput-
ing. Simulated Quantum Annealing (Martonák, Santoro and
Tosatti (2002)) approximates the partition function for the
quantum annealing Hamiltonian through the path-integral
technique using the Trotter formula. Specifically, SQA maps
the transverse field quantum Ising model to a classical (2+1)-
dimensional anisotropic Ising model with Hamiltonian

Hc
aI(s) =−

τ

∑
l=1

[B(t) ∑
<i, j>

Ji jsils jl + J(t)∑
j

s jls j,l+1], (9)

where s jl =±1, τ ∈ Z, l is the index for an extra imaginary-
time dimension, and Ji j are the couplings between the spins
in the original 2-dimensional Ising model. Additionally, J(t)
is the coupling along the imaginary-time dimension:

J(t) =−τT
2

ln[tanh(
A(t)
τT

)], (10)

where A(t) and B(t) are the same annealing schedules in the
original quantum annealing formulation.

Due to the extra imaginary-time dimension, the MCMC
method should run the Metropolis-Hastings algorithm in two
directions: 1. the local update of b spins at a fixed imaginary-
time index, i.e., updating sl = {sil , i = 1, ...,b} with a fixed l,
where sl is called the lth Trotter slice. 2. the global update
of the same spin position in all Trotter slices, i.e., fix i and
update all sil for each l value.

The SQA Algorithm:
1. Initialize spins in all Trotter slice with +1 and −1 ran-

domly and independently. Burn-in simulations can be added.

2. Locally and globally update spins one by one for each trot-
ter slice. A complete update of all spins locally and globally
is one sweep.
At the time of the kth sweep (denoted by tk):

(i). Local Update: For each spin i in each Trotter slice l,
attempt to flip from its old state s(k−1)

il to the new state s(k)il =

−s(k−1)
il , keeping all other spins unchanged. The change of

energy is: (formulation subject to change)

4E(k)
1il =−B(tk)[

i−1

∑
j=1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il)

+
b

∑
j=i+1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il)]

− J(tk)[s
(k)
il s(k)i,l+1 + s(k)i,l−1s(k)il

− s(k−1)
il s(k−1)

i,l+1 − s(k−1)
i,l−1 s(k−1)

il].

(11)

The local update accepts the new state s(k)il with probability

min{1,exp[−E(k)
1il /(τT)]}

(ii). Global Update: Once the local update is done for all
spins in all Trotter slices, iterate though each spin position
i and attempt to flip states (for given i) {s(k−1)

il , l = 1, ...,τ}
to new states {s(k)il = −s(k−1)

il , l = 1, ...,τ}, keeping all other
spins unchanged. Calculate the change of energy as: (formu-
lation subject to change)

4E(k)
2i =−

τ

∑
l=1

B(tk)[
i−1

∑
j=1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il)

+
b

∑
j=i+1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il)].

(12)

The global update accepts the new states {s(k)il , l = 1, ...,τ}
with probability min{1,exp[−4E(k)

2i /(τT)]}.
3. When all sweeps are complete, evaluate the origi-

nal classical Hamiltonian, use the first Trotter slice at the
last sweep and obtain s(k) = {s(k)i , i = 1, ...,b}, and evaluate
Hc

I (s(k)).

4 GAN-based Implicit Learning Models

4.1 Basics of GAN

GAN consists of a minimax game between the generator and
the discriminator. Let x ∈ Rd be a sample, then xr ∼ pdata is
a sample from the the real data distribution and xg ∼ pg is a
generated sample from the GAN-learned, synthetic data dis-
tribution. The generator G with parameters θG is trained to
synthesize samples that mimic the real sample distribution,
pdata, by mapping the noise vector (latent variable), z ∼ pz,
to a synthesized sample xg = G(z;θG), xg ∼ pg. The discrim-
inator D with parameters θD takes in a sample x ∈Rd (either
real or synthesized) and outputs D(x;θD), which is the pre-
dictive probability that x comes from pdata rather than pg.

4 Zhai et al.

During the training, G and D compete with each other ac-
cording to:

min
G

max
D

Ex∼Pdata(x) [log(D(x))]+Ez∼Pz(x) [log(1−D(G(z)))]

(13)
In Equation (13), the first term is the negated cross-entropy

between pdata(x) and D(x), whose value is positively associ-
ated with D’s ability of correctly predicting real samples as
from the real data distribution pdata(x); the second term is the
negated cross-entropy between pz(z) and 1−D(G(z)), where
1−D(G(z)) is D’s predictive probability that a synthesized
sample xg = G(z) is indeed considered as “synthetic,” i.e.,
xg ∼ pg. D aims to maximize its discriminative power char-
acterized by both terms, while the generator G tries to un-
dermine D’s performance by synthesizing realistic samples
to trick D (minimizing the second term).

Both D and G can be parametrized by deep neural net-
works or CNNs, and they are trained and optimized alterna-
tively according to Equation (13) until reaching the optima
or designated number of iterations.

4.2 Conditional GAN

Conditional GAN (CGAN) was introduced by Mirza et al
in 2014 (REF). A piece of additional information y (such
as class labels, or data from different modality) is fed into
the generator and discriminator in order to direct the data
generation process (Figure ??). CGAN aims to tackles
two challenges: (i) the difficulty of training GANs in cases
of extremely large numbers of predicted output categories.
(ii) learning one-to-one mappings from input to output, eg.,
learning different tags that could appropriately be assigned
to a given image.

The two-player minimax game objective function of
CGAN is:

min
G

max
D

Ex∼Pdata(x) [log(D(x|y))]+Ez∼Pz(x) [log(1−D(G(z|y)))]
(14)

5 Learning Simulated Quantum Annealing with GAN

5.1 Dataset

This study aims to establish a conditional GAN-based frame-
work that implicitly learns the distribution of the quan-
tum Ising states output by the simulated quantum annealing
(SQA) algorithm at a given transverse field strength Γ, which
is controlled by the annealing schedule A(t). We focus on
the the spin glasses example (REF Rieger and Young, 1996),
whose transverse field Ising model is defined by the Hamil-
tonian

H =−∑
〈i j〉

Ji jσ
z
i σ

z
j −Γ∑

i
σ

x
i , (15)

which is mapped to a (2+1)-dimensional anistropic Ising
model with SQA:

Hc
aI(s) =−

τ

∑
l=1

[∑
<i, j>

Ji jsils jl + J(t)∑
j

s jls j,l+1],

J(t) =−τT
2

ln[tanh(
A(t)
τT

)].

(16)

At each sweep k, the transverse field strength Γ is equal to
A(tk), and the SQA algorithm outputs an Ising ”cube” of size
n by n by τ , where n is the number of rows or columns in a
Trotter slice and τ is the total number of Trotter slice. The
total number of spins in each Trotter slice is thus b = n2.
We herein represent each of such simulated Ising ”cubes”
as x, corresponding to the real data samples for GAN, i.e.,
x∼ Pdata(x).

The Ising cubes output by the SQA model is analogous
to the image data for computer vision (CV). The numbers
of rows and columns correspond to the image height and
width, and the number of Trotter slices is the number of ”im-
age” channels. Therefore, a Convolutional Neural Network
(CNN) can be readily applied to the input data, which ex-
tracts the high-level features of each Ising cube and forms a
feature map subsequently learnt by a neural network. Such
CNN is the basic form of the GAN discriminator (REF?).

5.2 GAN Input Conditional Embedding

The classical GAN generator uses a dense layer and multiple
deconvolutional layers to map the input noise vector z ∼ pz

to a synthetic data sample xg = G(z;θG). The input z vector
first goes through a dense layer, whose output is reshaped to a
3-dimensional (width, height, channel) feature map f m1(z).
Then, multiple deconvolutional layers transform f m1(z) into
a synthetic sample G(z).

Inspired by CGAN, we supply additional information
about the target transverse field strength Γ to the generator to
direct its data generation process. The generator transforms
the input Γ value by feeding it to a single dense layer with
enough neurons so that its output can be reshaped to the same
dimensions as f m1(z) (call it f my(Γ)). Finally, the concate-
nated feature map, i.e., f m1(z)

⊕
f my(Γ), is then fed through

the subsequent deconvolutional layers to generate the condi-
tional synthetic sample G(z,Γ)

5.2.1 Discriminator Loss

As a preliminary study, we combine loss functions across
existing literature for learning the SQA Ising data.

Supervised Regression Loss The data labels of interest
(transverse field strength, Γ) is continuous. Converting con-
tinuous labels to some number of discrete classes not only
increases the quantization error of training, but also requires
large discriminator outputs, decreasing the classification and

Simulate Quantum Annealing Ising Model with Conditional Generative Adversarial Network 5

Figure 1: SQA-GAN Structure

computing efficiency. In 2018, Rezagholiradeh Haidar pro-
posed a regression-based GAN (REG-GAN), which requires
the discriminator to have two outputs: one for predicting the
continuous label, the other for predicting whether the given
data is real or fake. The discriminator loss is naturally bro-
ken down to two parts: a supervised loss for measuring the
regression error between the true and predicted label, and an
unsupervised loss for measuring how well the discriminator
tells apart fake data from real data:

L(D)
REG−GAN = L(D)

supervised +L(D)
unsupervised

L(D)
supervised = ||y− ŷ||2

L(D)
unsupervised = Ex∼pdata(x)[(1−D(x))2]

+Ez∼pz(z)[D(G(z))2],

(17)

where y is a vector of the ground-truth field strengths of
all real data, and ŷ is a vector of the corresponding regres-
sion predictions. It is worth noting that in their work (ref),
L(D)

unsupervised uses the least-square loss function as in Mao et
al, which we will replace with the hinge loss described be-
low.

Hinge Loss and Spectral Normalization in Conditional
GAN Settings Various studies have proposed techniques
to stabilize the GAN training, which cover multiple aspects
from architecture designs (Radford et al., 2015; He et al.,
2016), loss functions (Arjovsky et al., 2017; Mao et al.,
2017a), to regularization (Arjovsky et al., 2017; Gulrajani
et al., 2017; Mescheder et al., 2018; Miyato et al., 2018).
Lipschitz regularization (Gulrajani et al., 2017; Miyato et
al., 2018) is one of the most popular regularization methods
which has also shown great potential.

Miyato et al (ref) proposed the spectral normalization (SN)
method to impose Lipschitz regularity by normalizing the

weight matrix W by its spectral norm σ(W):

W SN(W) :=W/σ(W) (18)

Experiments show that SN performs better with the GAN
hinge loss (ref Miyato):

L(D)
hinge =−Ex∼pdata [min(0,−1+D(x))]

−Ez∼pz,y∼pdata [min(0,−1−D(G(z,y)))]

= L(D)
real +L(D)

f ake

(19)

Herein, we take advantage of spectral normalization in
combination with the hinge loss and adopt the supervised re-
gression loss to accommodate for the continuous label (Γ).
The total discriminator loss is thus:

L(D) = L(D)
regression error +L(D)

hinge

= Ey∼pdata [(y− ŷ)2]−{Ex∼pdata [min(0,−1+D(x))]

+Ez∼pz,y∼pdata [min(0,−1−D(G(z,y)))]}
(20)

5.2.2 Generator Loss

The major goal of the generator is to create realistic Ising
cubes given a target transverse field strength Γ. Two impli-
cations arise: i. the generator should confuse the discrimina-
tor by generating data close to the real distribution. ii. the
generator should produce fake data that are realistic with re-
spective to a given conditional label, i.e., the target Γ.

Heuristic Game Loss To confuse the discriminator, the
generator tries to “weaken” the discriminator’s classifica-
tion performance. However, the original formulation of the
generator loss (Goodfellow et al., 2014a), i.e., minG 1−
D(G(z)), does not perform especially well. This is because

6 Zhai et al.

the generator’s gradient vanishes when the discriminator has
high confidence of distinguishing generated samples from
the real samples, i.e., when D(G(z))→ 0. Instead, with the
heuristically motivated game concept (Goodfellow, 2016),
the generator instead minimizes −D(G(z)). The heuristic-
game generator loss with conditional input y is thus

L(G)
heuristic =−Ez∼pz,y∼pdata [D(G(z,y))], (21)

which, combined with the discriminator hinge loss, Eq.19,
follows the same hinge loss structure in (ref limYe, miyato,
multi-hinge Kavalerov) but is adjusted for conditional input
y.

Transverse Field Regression Error We assume that the
real simulated data are the ground truth configurations ad-
hering to the laws of quantum physics. The discriminator
regression, which is trained only on the real data, provides a
direct measure of the generator’s capability of creating spin
configurations true to the target field strength Γ. This is mea-
sured via:

L(G)
RE = ||Γ− Γ̂||2, (22)

where Γ is a vector of all target field strength values supplied
to the generator (as conditional label y) during training, and
Γ̂ is a vector of corresponding regression outputs predicted
by the discriminator.

Feature Matching Feature matching is a technique that
prevents over-training the generator and increases the sta-
bility of the GAN (Salimans et al., 2016). It requires the
generator to produce samples which result in similar features
on an intermediate layer of the discriminator network as do
the real samples. Therefore, the generator loss considering
feature matching is formulated as:

L(G)
f eature matching =

∥∥∥Ex∼pdata(x) f (x)−Ez∼pz(z) f (G(z))
∥∥∥2

2
(23)

where f (x) is the activations of an intermediate layer of the
discriminator for a given sample x. In this study, f (x) is de-
fined by the ReLU (Nair and Hinton, 2010) activation on the
flattened output of the last convolutional (Conv) layer of the
discriminator network.

Average Magnetization Matching Our Ising cube data
are not naturally occurring, day-to-day images, but the aver-
age magnetization of an Ising cube summarizes the average
number of spins that are up/down (as marked by black/white
squares), which is a human observable feature. Liu and Ro-
drigues proposed using the magnetization per spin as an aux-
iliary state for the generator to match the real data at a given
Γ, which was shown to be effective for learning Ising spin
configurations:

L(G)
avg mag = E(x,y)∼pdata,z∼pz [(M(x)−M(G(z,y)))2], (24)

and we calculate the average magnetization across all Trotter
slices:

M(s) =
1

bτ

b

∑
i=1

τ

∑
l=1

sil . (25)

Finally, combining all parts together, the total generator
loss is:

L(G) = L(G)
heuristic +L(G)

RE +L(G)
f eature matching +L(G)

avg mag (26)

5.2.3 SQA-GAN Algorithm

By introducing a conditional label input to the generator,
adding a regression output to the discriminator, and incor-
porating spectral normalization in the discriminator layers,
our SQA-GAN design takes the structure in Fig ??.

For each training batch of m real data-label pairs, i.e.,
{(xi,yi), i ∈ 1, ...,m}, the detailed training procedure of the
SQA-GAN is as follows:

Step 0: Initialize the discriminator D and the generator G
with θD and θG, respectively.

Step 1: Feed the real batch of samples, {xi, i ∈ 1, ...,m},
to the discriminator D, which outputs a vector of
predicative probabilities that input sample is real,
[D(x1), ...,D(xm)]

T , and a vector of predicted continu-
ous labels [ŷreal

1 , ..., ŷreal
m]T

Step 2: Random noise vectors, z = {z1, . . . ,zm}, are sam-
pled from the noise prior pg(z). Each zi is paired with
the real continuous label yi and {(z1,y1), ...,(zm,ym)} is
fed to G to conditionally generate m synthetic samples,
{G(z1,y1), . . . ,G(zm,ym)}.

Step 3: Feed {G(z1,y1), . . . ,G(zm,ym)} to D. For each
G(zi,ym), i ∈ {1, . . . ,m}, D outputs a predictive proba-
bility for the data being real, D(G(zi,ym)), and a pre-
dicted continuous label ŷ f ake

i

Step 4: Compute the discriminator loss, L(D):

L(D) =
1
m

m

∑
i=1

(yi− ŷreal
i)2− 1

m

m

∑
i=1

min(0,−1+D(xi))

− 1
m

m

∑
i=1

min(0,−1−D(G(zi,yi)))

(27)

Step 5: Compute the generator loss, L(G):

L(G) =− 1
m

m

∑
i=1

D(G(zi,yi))+
1
m

m

∑
i=1

(yi− ŷ f ake
i)2

+|| 1
m

m

∑
i=1

f (xi)−
1
m

m

∑
i=1

f (G(zi,yi))||22

+
1
m

m

∑
i=1

(M(xi)−M(G(zi,yi)))
2

(28)

Simulate Quantum Annealing Ising Model with Conditional Generative Adversarial Network 7

Step 6: Optimize and update the network parameters θD and
θG, where η is the learning rate.

θD← θD−η ·∇θDL(D) (29)

θG← θG−η ·∇θGL(G) (30)

Repeat steps (1) to (8) until convergence is achieved or the
designated number of iterations is reached.

6 Experiments

6.1 Experimental objective

We try to create a quantum annealing simulator using GAN-
based methods. Specifically, we want to implicitly learn the
Ising spin configurations output by the SQA algorithm with
our proposed SQA-GAN and compare its data generation
performance with other GAN methods.

6.2 Dataset

We first build a quantum annealing simulator with the path-
integral SQA algorithm (ref). We then simulate a 32× 32
spin-glass system and generate the training data using a lin-
ear annealing schedule from Γ = 3.00 to Γ = 0.01. We simu-
late one sweep for each 0.001 increment of Γ and repeat the
process 50 times. There are 32× 32 = 1024 spins on each
Trotter slice. With 20 Trotter slices, each Ising spin configu-
ration (xi) has shape 32∗32∗20.

6.3 Evaluation metrics

There are three aspects to measuring each model’s genera-
tive capability: i. regressive evaluation by the discriminator.
ii. average magnetization distribution. iii. quality of visual
features.

Regressive Error The generator should not only produce
realistic samples, but also generate data that realistically
match the target transverse field strength Γ. Because the dis-
criminator is only trained on real samples for regression, its
predicative error on fake samples’ target labels indicates the
degree of dissimilarity between the real and generated data
distributions. Thus, the L(G)

RE loss in Equation.22 is a direct
measurement of such dissimilarity between the two distribu-
tions.

Average Magnetization Distribution The average mag-
netization distribution is an effective overview of an Ising
simulator’s statistical behavior. Besides comparing the aver-
age magnetization loss L(G)

avgmag, we also plot the average mag-
netization distribution histograms for more detailed compar-
ison.

Visual Quality Visual inspection is another important step
for checking mode collapse and the diversity of the generated
samples. In particular, we check whether the generated sam-
ples have repetitive patterns at different field strengths and
whether the generated samples are just direct copies of the
real data.

6.4 Network configurations

Discriminator Architecture The discriminator input takes
shape 32 ∗ 32 ∗ 20, we use different convolution filter sizes
and batch normalization layers after each (ReLU activated)
dense layer. However, no batch normalization is used for the
first dense layer as suggested by (ref Radford Unsupervised
Representation). Additionally, the discriminator weight ma-
trices are spectral-normalized to impose the Lipschitz-1 con-
dition for more stable training. The feature map output by the
last convolution layer is flattened and fed into a fully con-
nected dense layer with 2 neurons: one for the regression
output and one for the real/fake classification output. The
Discriminator architecture is illustrated in Table.1

Generator Architecture The noise vector z and the con-
ditional label y are first processed by two separate densely-
connected layers and then reshaped and concatenated for
subsequent deconvolution operations. No batch normaliza-
tion is used for the last deconvolution layer per (ref Radford
Unsupervised Representation). The Generator architecture is
illustrated in Table.2.

7 Experimental Results & Analysis

8 Conclusions & Extensions

Acknowledgements

References

Antoniou, A., Storkey, A., and Edwards, H. (2017). Data
augmentation generative adversarial networks. arXiv
preprint arXiv:1711.04340.

Azimi, M., Eslamlou, A. D., and Pekcan, G. (2020). Data-
driven structural health monitoring and damage detection
through deep learning: State-of-the-art review. Sensors,
20(10):2778.

Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R.,
Hammers, A., Dickie, D. A., Hernández, M. V., Wardlaw,
J., and Rueckert, D. (2018). Gan augmentation: Augment-
ing training data using generative adversarial networks.
arXiv preprint arXiv:1810.10863.

Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017). Deep
learning-based crack damage detection using convolu-
tional neural networks. Computer-Aided Civil and Infras-
tructure Engineering, 32(5):361–378.

8 Zhai et al.

Table 1: Configurations of the discriminator of the BSS-GAN

Layer Filter size (#) Activation Shape Notes (α: −ive slope coef. in Leaky ReLU)
Input - - (N, 32, 32, 20) Input RGB images of size 128×128
Conv 3×3 (32) Leaky ReLU (N, 16, 16, 32) Stride = 2, α = 0.2

Dropout - - (N, 16, 16, 32) Dropout rate = 0.25
Conv 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 2, α = 0.2

BatchNorm - - (N, 8, 8, 64) Momentum = 0.8
Dropout - - (N, 8, 8, 64) Dropout rate = 0.25

Conv 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 1, α = 0.2
Flatten - - (N, 4096) 4096 = 8×8×64

Fc-layer - Softmax (N, 2) Regression and classification outputs

Table 2: Configuration of the generator of the BSS-GAN

Layer Activation Shape Note
Input - (N, 100) Noise vector

FC-layer ReLU (N, 8192) 8192=8*8*128
Reshape - (N, 8, 8, 128)

Layer Activation Shape Note
Input - (N, 1) Input Label

FC-layer ReLU (N, 1024) 1024=32*32*1
Reshape - (N, 8, 8, 1)

Layer Filter size (#) Activation Shape Notes
Concat - - (N, 8, 8, 129) Concatenate two feature maps above
Deconv 3×3 (128) ReLU (N, 16, 16, 64) Stride = 2

BatchNorm - - (N, 16, 16, 64) Momentum = 0.8
Deconv 3×3 (64) ReLU (N, 32, 32, 32) Stride = 2

BatchNorm - - (N, 32, 32, 32) Momentum = 0.8
Deconv 3×3 (3) ReLU (N, 32, 32, 20) Stride = 1

Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., and
Büyüköztürk, O. (2018). Autonomous structural visual
inspection using region-based deep learning for detecting
multiple damage types. Computer-Aided Civil and Infras-
tructure Engineering, 33(9):731–747.

Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). Spe-
cial issue on learning from imbalanced data sets. ACM
SIGKDD explorations newsletter, 6(1):1–6.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). Emnist: Extending mnist to handwritten letters. In
2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE.

Deng, J., Lu, Y., and Lee, V. C.-S. (2020). Concrete crack de-
tection with handwriting script interferences using faster
region-based convolutional neural network. Computer-
Aided Civil and Infrastructure Engineering, 35(4):373–
388.

Deng, J., Wei, D., Richard, S., Li-Jia, L., Kai, L., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical im-
age database. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 248–255.

Dorafshan, S., Thomas, R. J., and Maguire, M. (2018).
Comparison of deep convolutional neural networks and

edge detectors for image-based crack detection in con-
crete. Construction and Building Materials, 186:1031–
1045.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and
Greenspan, H. (2018). Synthetic data augmentation using
gan for improved liver lesion classification. In Biomedical
Imaging (ISBI 2018), pages 289–293. IEEE.

Gao, Y., Kong, B., and Mosalam, K. M. (2019). Deep leaf-
bootstrapping generative adversarial network for structural
image data augmentation. Computer-Aided Civil and In-
frastructure Engineering, 34(9):755–773.

Gao, Y., Li, K., Mosalam, K., and Günay, S. (2018). Deep
residual network with transfer learning for image-based
structural damage recognition. In Eleventh US National
Conference on Earthquake Engineering, Integrating Sci-
ence, Engineering & Policy.

Gao, Y. and Mosalam, K. M. (2018). Deep transfer
learning for image-based structural damage recognition.
Computer-Aided Civil and Infrastructure Engineering,
33(9):748–768.

Gao, Y. and Mosalam, K. M. (2020). Peer hub ima-
genet: A large-scale multiattribute benchmark data set

Simulate Quantum Annealing Ising Model with Conditional Generative Adversarial Network 9

of structural images. Journal of Structural Engineering,
146(10):04020198.

Glorot, X. and Bengio, Y. (2010). Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256.

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adver-
sarial networks. arXiv preprint arXiv:1701.00160.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press, Cambridge.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014a). Generative adversarial nets. In Advances in neu-
ral information processing systems, pages 2672–2680.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b).
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

He, H. and Garcia, E. A. (2009). Learning from imbalanced
data. IEEE Transactions on knowledge and data engineer-
ing, 21(9):1263–1284.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 770–778.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. arXiv preprint arXiv:1704.04861.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 1125–1134.

Jain, N., Manikonda, L., Hernandez, A. O., Sengupta, S.,
and Kambhampati, S. (2018). Imagining an engineer: On
gan-based data augmentation perpetuating biases. arXiv
preprint arXiv:1811.03751.

Jiang, S. and Zhang, J. (2019). Real-time crack assessment
using deep neural networks with wall-climbing unmanned
aerial system. Computer-Aided Civil and Infrastructure
Engineering.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. Technical Report TR-2009.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
(2015). Human-level concept learning through probabilis-
tic program induction. Science, 350(6266):1332–1338.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Liang, X. (2019). Image-based post-disaster inspection of re-
inforced concrete bridge systems using deep learning with
bayesian optimization. Computer-Aided Civil and Infras-
tructure Engineering, 34(5):415–430.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier
nonlinearities improve neural network acoustic models. In
Proc. icml, volume 30, page 3.

Madani, A., Moradi, M., Karargyris, A., and Syeda-
Mahmood, T. (2018a). Chest x-ray generation and data
augmentation for cardiovascular abnormality classifica-
tion. In Medical Imaging 2018: Image Processing, vol-
ume 10574, page 105741M. International Society for Op-
tics and Photonics.

Madani, A., Moradi, M., Karargyris, A., and Syeda-
Mahmood, T. (2018b). Semi-supervised learning with
generative adversarial networks for chest x-ray classifi-
cation with ability of data domain adaptation. In 2018
IEEE 15th International Symposium on Biomedical Imag-
ing (ISBI 2018), pages 1038–1042. IEEE.

Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T., and
Omata, H. (2020). Generative adversarial network for road
damage detection. Computer-Aided Civil and Infrastruc-
ture Engineering.

Maeda, H., Sekimoto, Y., and Seto, T. (2016). Lightweight
road manager: smartphone-based automatic determination
of road damage status by deep neural network. In Proceed-
ings of the 5th ACM SIGSPATIAL International Workshop
on Mobile Geographic Information Systems, pages 37–45.

Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., and Mal-
ossi, C. (2018). Bagan: Data augmentation with balancing
gan. arXiv preprint arXiv:1803.09655.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012).
Foundations of machine learning. MIT press, Cambridge.

Mosalam, K., Muin, S., and Gao, Y. (2019). New directions
in structural health monitoring. NED University Journal
of Research, 2:77–112.

Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines. In In Proceedings

10 Zhai et al.

of the 27th international conference on machine learning,
pages 807–814. ICML.

Oh, B. K., Kim, K. J., Kim, Y., Park, H. S., and Adeli,
H. (2017). Evolutionary learning based sustainable strain
sensing model for structural health monitoring of high-rise
buildings. Applied Soft Computing, 58:576–585.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning.
IEEE Transactions on knowledge and data engineering,
22(10):1345–1359.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.

Rafiei, M. H. and Adeli, H. (2017). A novel machine
learning-based algorithm to detect damage in high-rise
building structures. The Structural Design of Tall and Spe-
cial Buildings, 26(18):e1400.

Rafiei, M. H., Khushefati, W. H., Demirboga, R., and Adeli,
H. (2017). Supervised deep restricted boltzmann machine
for estimation of concrete. ACI Materials Journal, 114(2).

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. (2016). Improved techniques for
training gans. In Advances in Neural Information Process-
ing Systems, pages 2234–2242.

Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Villa, T. F., Gonzalez, F., Miljievic, B., Ristovski, Z. D., and
Morawska, L. (2016). An overview of small unmanned
aerial vehicles for air quality measurements: Present ap-
plications and future prospectives. Sensors, 16(7):1072.

Xue, Y. and Li, Y. (2018). A fast detection method via region-
based fully convolutional neural networks for shield tunnel
lining defects. Computer-Aided Civil and Infrastructure
Engineering, 33(8):638–654.

Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., and Yang, X.
(2018). Automatic pixel-level crack detection and mea-
surement using fully convolutional network. Computer-
Aided Civil and Infrastructure Engineering, 33(12):1090–
1109.

Yeum, C. M., Dyke, S. J., and Ramirez, J. (2018). Visual
data classification in post-event building reconnaissance.
Engineering Structures, 155:16–24.

Yi, X., Walia, E., and Babyn, P. (2019). Generative adversar-
ial network in medical imaging: A review. Medical image
analysis, page 101552.

Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X., Peng, Y.,
Fei, Y., Liu, Y., Li, J. Q., and Chen, C. (2017). Auto-
mated pixel-level pavement crack detection on 3d asphalt
surfaces using a deep-learning network. Computer-Aided
Civil and Infrastructure Engineering, 32(10):805–819.

Zhang, C., Chang, C.-c., and Jamshidi, M. (2020). Concrete
bridge surface damage detection using a single-stage de-
tector. Computer-Aided Civil and Infrastructure Engineer-
ing, 35(4):389–409.

Zhang, X., Wang, Z., Liu, D., and Ling, Q. (2019). Dada:
Deep adversarial data augmentation for extremely low
data regime classification. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2807–2811. IEEE.

	Background & Motivations
	Related Work
	Ising Model Monte Carlo Simulations
	Classical Ising Model
	Classical Annealing
	Quantum Ising Model
	Quantum System Representation
	Quantum Annealing
	Simulated Quantum Annealing

	GAN-based Implicit Learning Models
	Basics of GAN
	Conditional GAN

	Learning Simulated Quantum Annealing with GAN
	Dataset
	GAN Input Conditional Embedding
	Discriminator Loss
	Generator Loss
	SQA-GAN Algorithm

	Experiments
	Experimental objective
	Dataset
	Evaluation metrics
	Network configurations

	Experimental Results & Analysis
	Conclusions & Extensions

