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Abstract 
In recent years, using deep learning (DL) with convolutional neural network (CNN) to assess structural damages has 
gained growing interest in vision-based structural health monitoring (SHM). However, most of the current DL 
applications in SHM fall into the supervised learning category, e.g., image classification, damage localization, etc., which 
requires large amounts of labeled data. Obtaining such large-scale labeled dataset is costly and requires significant efforts. 
In practice, the collected structural image dataset is usually highly imbalanced, because the images related to damages, 
e.g., reinforced concrete cover spalling, are far fewer than those without structural damage patterns, which further
exacerbates the training difficulty. Transfer learning (TL) and data augmentation (DA) are common strategies to mitigate
the above-mentioned issues. However, the former requires fine-tuning a deep pre-trained network with large amounts of
parameters, which not only is computationally expensive but also requires an open-source, pre-trained model; the latter
can only generate highly-correlated data, which does not increase data variety. Generative Adversarial Network (GAN),
a recent computer vision technology, is an alternative to TL and DA for increasing model performance, especially under
deficient data and limited computational resources. In this work, we introduce one variant of GAN, named the Balanced
Semi-supervised GAN (BSS-GAN), which adopts the semi-supervised learning concept and uses the balanced-batch
sampling technique during training. It aims to better-exploit GAN-generated data to enhance both classification accuracy
and computational efficiency. We design and conduct a series of computer experiments with respect to spalling detection
under the imbalanced-class and low-data regime, i.e., training with only 1,130 labeled images with a roughly 4:1 class
ratio for non-spalling : spalling. During the experiments, BSS-GAN is compared with a baseline CNN (BSL), which uses
the conventional training procedure, under different magnitudes of labeled data. Moreover, BSS-GAN is compared with
another GAN-based augmentation pipeline (GAN-Aug), which trains the BSL on a balanced dataset by oversampling the
minority class with GAN-generated synthetic data. The results show that BSS-GAN achieves about 92% overall accuracy
and about 84% true positive rate, indicating its improved classification performance over both BSL and GAN-Aug. This
demonstrates the effectiveness and research potential of semi-supervised GAN for future vision-based SHM.

Keywords: Deep Learning, Generative Adversarial Network, Semi-supervised Learning, Structural Health Monitoring. 
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1. Introduction 

As the concept of structural resilience becomes more popular, the needs for structural health monitoring (SHM) 
are no longer limited to detecting structural damage after natural disasters or extreme events, and SHM 
becomes more crucial for regular inspection and maintenance during the operation of a structure. Usually, 
SHM efforts heavily rely on the domain expertise of well-trained engineers, whose manual inspections on the 
structures is often inefficient. Therefore, the state-of-the-art artificial intelligence (AI) technologies, e.g., deep 
learning (DL), are gaining more attention in SHM research. There are two major directions in SHM: vibration-
based and vision-based SHM. Particularly for vision-based SHM, computer experiments have achieved great 
success [1-4] in structural damage assessment, indicating high practical potentials. 

However, two key issues impede the development of DL in vision-based SHM: insufficient data and 
imbalanced classes. Most of the current DL applications in vision-based SHM fall into the supervised learning 
category, e.g., image classification, damage localization, etc., which requires a substantial amount of labeled 
data. Obtaining large-scale labeled image datasets of structures is costly and time-consuming. Moreover, 
unlike common image benchmark datasets, e.g., MNIST [5], CIFAR-10 [6], SHM datasets have highly 
imbalanced classes. Such imbalance originates from the nature of SHM: structural damages due to either 
natural deterioration or extreme events such as earthquakes are less frequent cases due to design code 
objectives and high levels of conservativism for safety purposes. Past studies tend to ignore this issue by 
constructing relatively balanced datasets. 

Transfer learning (TL) and data augmentation (DA) are conventional strategies to overcome data 
deficiency. In TL, by tuning parameters from a pre-trained model, the new model can adapt to the target domain 
relatively easily, where the parameters in the early layers inherit certain knowledge from basic features in the 
source domain, making the model less dependent on large amounts of data [7]. In DA, the number of training 
samples is increased via a series of affine transformations or other pre-processing operations, e.g., translation, 
flip, scale, whitening, and adding noise. Both TL and DA have significant curtailments: the former requires 
fine-tuning a deep pre-trained network with a large amount of parameters, which not only requires a pre-
trained, open-source model but is also computationally expensive; the latter can only generate highly-
correlated data, which does not increase data variety and sometimes might lead to worse results [8]. 

Generative Adversarial Network (GAN) is an alternative to TL and DA, but very few experiments have 
been conducted under low-data regimes and limited computational resources. GAN generates synthetic data 
from the real data distribution, augmenting the data and possibly enhancing the model performance. Compared 
to TL, common GAN designs have simpler architectures and fewer trainable parameters than pre-trained DL 
models from ImageNet [9], e.g., VGGNet [10] and ResNet [11], which makes GAN applicable to custom-
designed networks and less demanding for computing power. Compared to DA, GAN can generate new data 
unseen by the model, increasing data variety. In vision-based SHM, there exist a few early GAN studies [12], 
which only explore very basic GAN usage with inefficient algorithms. In this work, we convert the GAN into 
a semi-supervised variant as suggested in [12], where the semi-supervised mechanism can more thoroughly 
exploit the features of the unlabeled data, simultaneously increasing the model’s data generation and 
classification capabilities. 

In this study, the authors aim to build a semi-supervised GAN for structural damage assessment and to 
evaluate its performance compared with the baseline DL classifier through multiple comparative experiments. 
To overcome the imbalanced-classes issue, a balanced batch sampling technique is adopted in the training 
procedure. We name this model the Balanced Semi-supervised GAN (BSS-GAN). 

2. Related work 
The concept of GAN was first introduced by Goodfellow et al. [13] in 2014, which is a generative model that 
generates new data from learned data distribution. Unlike conventional DL models, GAN consists of two 
networks, namely the generator and the discriminator, where the generator creates synthetic data and the 
discriminator classifies an input sample as “real” or “synthetic”. More details are covered in Section 3. GAN 
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uses adversarial training, where each network aims to minimize the gain of the opposite side while maximizing 
its own. Ideally, both the generator and the discriminator converge to the Nash equilibrium, where the 
discriminator gives equal predictive probabilities to real and synthesized samples. The rapid growth of GAN 
studies has produced many types of GANs, which modify the ordinary GAN [13,14] with different network 
architectures, loss functions, training strategies, etc. Some notable ones are the Deep Convolutional GAN 
(DCGAN) [15], Wasserstein GAN (WGAN) [16], Conditional GAN [17], and BigGAN [18]. 

Until now, GAN has been applied to many computer vision (CV) tasks, e.g., fake image generation 
[15,18] and image-to-image translation [19]. It is noted that GANs have seen rapid adoption in the medical 
imaging [20] community for purposes of image synthesis, reconstruction, and classification. A few examples 
are reviewed here. Frid-Adar et al. [21] applied DCGAN to generate synthetic medical images for three lesion 
classes (Cysts, Metastases, and Hemangiomas) and then augmented the real image dataset with the generated 
images, which achieved 7% improvement over classic augmentation methods. Similarly, for cardiovascular 
abnormality detection, Madani et al. [22] first down-sampled Chest X-Ray images to 128×128 pixels and then 
used a variant of GAN to generate synthetic images to enrich the raw dataset. With the mixed images, the DL 
classifier reached a roughly 2% improvement over the non-augmented baseline and 1% over traditional DA. 
Furthermore, Madani et al. [23] formatted the GAN in a semi-supervised manner and conducted comparative 
experiments to investigate the effectiveness of GAN under different levels of labeled data. Their results 
indicated such GAN worked more efficiently under low-data regimes. 

Instead of detecting human health conditions from medical images, vision-based SHM detects the health 
conditions of structures. However, there exist limited studies in the SHM using GANs. The first documented 
work was conducted by Gao et al. [12] in 2019 where they designed a specific DCGAN architecture for 
structural images and proposed a leaf-bootstrapping method to improve the quality of the synthesized images. 
Furthermore, based on validation experiments under low-data regime and limited computational resources, it 
was found that simply mixing synthetic images with the real ones did not work well, which might even lead to 
worse performance. Therefore, a special union training pipeline was proposed, where the DL classifier was 
pre-trained on generated synthetic images and then fine-tuned by real ones. Such training pipeline was able to 
enhance the classifier performance by nearly 7% over the baseline. However, this training pipeline is 
inefficient, because both the GAN model and the classifier need to be trained, and large amounts of synthesized 
images are left valueless after the pre-training process. From the findings of Gao et al. [12] and the study of 
Madani et al. [23], reformulating the problem into a semi-supervised learning paradigm seemed to be a 
promising solution.  

3. Methodology 
3.1 Ordinary GAN 
Goodfellow et al. [13] proposed a generative adversarial modeling framework that consists of a minimax game 
between two players: the generator and the discriminator. The generator is a multi-layer perceptron G with 
parameter 𝜃 #  that intends to create samples to match the real data distribution, 𝑝%&'&(𝑥), by mapping the 
noise vector 𝑧, with 𝑧~𝑝-, to a synthesized sample 𝐺(𝑧; 𝜃(#)), which follows a probability distribution 𝑝0(𝑥). 
The discriminator is another multi-layer perceptron D with parameter 𝜃 1  that takes in a sample x and outputs 
𝐷(𝑥; 𝜃(1)) which is the probability that x comes from 𝑝%&'&  rather than 𝑝0 . D is trained to maximize its 
accuracy of correctly labeling the training samples and the generated samples, while G is trained to weaken 
D’s prediction accuracy. Such interaction results in a two-play minimax game, Eq. (1). This can be computed 
as the negative cross-entropy of two data batches—one with real data and another with synthetic data from the 
generator. 

 min
#
max
1

𝑉 𝐷, 𝐺 = 𝔼<~=>?@? < log𝐷 𝑥 + 𝔼-~=E(-)[log(1 − 𝐷(𝐺(𝑧)))]						 (1) 
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In subsequent studies, e.g., Radford et al. [15], both G and D are replaced by a deep convolutional neural 
network (CNN) to enhance the GAN performance, but the objective function is still consistent with Eq. (1). 
For convenience, such family of GAN is denoted as ordinary GAN in this paper.  

3.2 Semi-supervised K+1-class GAN classifier 
The ordinary GAN is trained in an unsupervised learning manner, and its discriminator only differentiates 
unlabeled real samples from those synthesized by the generator. Herein, we increase the output dimension of 
the discriminator from 2 (“real” or “synthetic”) to K+1 such that the discriminator can classify samples from 
K real classes (for samples in 𝑝%&'&) and one “generated” class (for samples in 𝑝0). The model can now learn 
from both unlabeled and labeled data. 

The discriminator D takes in a sample x and outputs a K+1-dimensional vector of class probabilities 
𝑝JK%LM 𝑦 𝑥 , where 𝑝JK%LM 𝑦 = 𝑖 𝑥 = exp	(𝐷(𝑥)S) exp	(𝐷(𝑥)T)UVW

TXW  and {𝐷(𝑥)W, … , 𝐷(𝑥)UVW} are logits 
corresponding to each class. Herein, 𝑝JK%LM 𝑦 = 𝐾 + 1 𝑥  represents the predicted probability that sample x 
is “synthetic,” and 𝐷(𝑥) in Eq. (1) can be substituted by 1 − 𝑝JK%LM 𝑦 = 𝐾 + 1 𝑥 . Similarly, 1 − 𝐷(𝐺(𝑧)) 
in the second term of Eq. (1) is equivalent to 𝑝JK%LM 𝑦 = 𝐾 + 1 𝑥 . In order to minimize the discriminator 
loss, value function V(∙) in Eq. (1) is reformulated into Eq. (2) with negative signs and the above substitutions, 
which becomes unsupervised without label information. 

 𝐽 1 _`a_=LbcSaL% = −{𝔼<~=𝒅𝒂𝒕𝒂 < log 1 − 𝑝JK%LM 𝑦 = 𝐾 + 1 𝑥 + 𝔼<~=g < log[𝑝JK%LM(𝑦 = 𝐾 + 1|𝑥)]}						 (2) 

The supervised loss of the discriminator is the cross-entropy between K real labels and the model’s predicted 
class distribution 𝑝JK%LM(𝑦|𝑥): 

 𝐽(1)a_=LbcSaL% = −𝔼𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎 𝑥,𝑦 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦 = 𝑖|𝑥, 𝑖 < 𝐾 + 1) (3) 

Finally, the total discriminator loss is expressed as follows: 

 𝐽(1) = 𝐽(1)_`a_=LbcSaL% + 𝐽
(1)

a_=LbcSaL% (4) 

3.3 Semi-supervised generator loss for non-saturating game 
From Goodfellow [14], the zero-sum game loss for G in Eq. (5) does not perform well in practice, where 
𝑉(𝐷, 𝐺) is defined in Eq. (1). 

 𝐽(#) = −𝐽(1) = 𝑉(𝐷, 𝐺) (5) 
The generator’s gradient vanishes when the discriminator fully distinguishes synthetic samples from the real 
ones, i.e., when 𝐷(𝐺(𝑧)) becomes 0. Goodfellow [14] proposed a heuristically motivated GAN game loss for 
the generator as follows: 

 𝐽(#) = − W
q
𝔼- log 𝐷(𝐺(𝑧)) (6) 

Instead of minimizing the expected log-probability of the discriminator being correct, the generator now 
maximizes the expected log-probability of the discriminator making a mistake, i.e., labeling a generated sample 
𝐺(𝑧) as real. In this study, we drop the constant multiplier, W

q
	, and modify the expression to fit into the semi-

supervised scenario with K+1 classes as follows: 

 𝐽(#)rL_bSa'Ss = −𝔼<~=g < log[1 − 𝑝JK%LM(𝑦 = 𝐾 + 1|𝑥)] (7) 
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3.4 Generator feature matching 
From Salimans [24], feature matching is a technique that prevents overtraining the generator and increases the 
stability of GANs. The generator is trained to output samples which yield similar activations at an intermediate 
layer of the discriminator as those from the real samples as follows: 

 𝐽(#)tL&'_bL	J&'srS`0 = 𝔼<~=>?@? < 𝑓 𝑥 − 𝔼-~=E - 𝑓(𝐺(𝑧)) q
q (8) 

where 𝑓(𝑥) is the activations on an intermediate layer of the discriminator for a given sample 𝑥. In this study, 
we choose the flattened output (activated by ReLU [25]) of the last convolution layer of the discriminator 
network as 𝑓(𝑥). 

The total generator loss is finally computed as follows: 

 𝐽(#) = 𝐽(#)rL_bSa'Ss + 𝐽
(#)

tL&'_bL	J&'srS`0 (9) 

3.5 The training procedure of the BSS-GAN 
In order to address the strong class imbalance issue, a special training procedure using the idea of balanced 
batch sampling is proposed.  Instead of randomly sampling data from the raw dataset to form the training batch, 
where the class ratio is extremely biased, samples from each class are equally drawn to form the batch with a 
balanced class ratio. Such strategy may be helpful in eliminating the prior bias during training. This whole 
pipeline including semi-supervised GAN and balanced batch sampling is named the Balanced Semi-supervised 
GAN (BSS-GAN). For a training batch size of 2n, the detailed procedure is listed below: 

i. Initialize the discriminator D and the generator G. 
ii. Half batch of real samples, {𝑥W, … , 𝑥`}, is passed into the discriminator, and these samples are 

equally drawn from K classes according to the labels. For each 𝑥S ∈ {𝑥W, … , 𝑥`}, the discriminator 
outputs a K+1-dimensional probability vector, 𝑣S = [𝑝JK%LM 𝑦 = 𝑗 𝑥S , ∀𝑗 ∈ {1, … , 𝐾 + 1}]z. 

iii. Half batch of random noise vectors, {𝑧W, … , 𝑧`}, is fed into the generator. For each 𝑧S ∈ {𝑧W, … , 𝑧`}, 
the generator outputs a generated sample, 𝐺(𝑧S). 

iv. The generated synthetic samples, {𝐺 𝑧W , … , 𝐺(𝑧`)}, are passed into the discriminator. For each 
𝐺 𝑧S ∈ {𝐺 𝑧W , … , 𝐺(𝑧`)}, the discriminator outputs a K+1-dimensional probability vector 𝑢S =
[𝑝JK%LM 𝑦 = 𝑗 𝐺 𝑧S , ∀𝑗 ∈ {1, … , 𝐾 + 1}]z. 

v. Optimize and update the discriminator and the generator’s parameters, 𝜃 1  and 𝜃 # , respectively, 
by minimizing Eqs. (4) and (9). 

Repeat steps (ii) to (v) until convergence is achieved or designated number of epochs is reached.  

4. Experiment setup 
In this study, we investigate one basic structural damage detection task in vision-based SHM, namely 
reinforced concrete cover spalling condition detection, which aims to classify between labels “spalling” (SP) 
and “non-spalling” (NSP). SP describes the condition where the exterior of a concrete structure peels off, 
exposing the interior components (mainly reinforcing bars), whereas NSP may be any other conditions, i.e., 
either the structure is completely intact, or contains minor cracks but without spalling (cover loss). Details 
about data preparation and experiment settings are presented in the following sub-sections. 

4.1 Data preparation 
Gao and Mosalam [8] open-sourced a relatively large structural image dataset, namely the PEER Hub 
ImageNet (𝜙-Net), which includes eight sub-datasets related to scene level, spalling condition, damage state, 
material type, etc. In this study, the “spalling condition” subset was used as the raw data source, and it was 
further processed for designed experiments. 
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Data preprocessing is conducted as: (1) clean the dataset and select images at the pixel level with high 
visual quality; (2) further select and store the NSP and SP images in a roughly 4:1 ratio to build the 
experimental dataset, which simulates the class imbalance issue in practice; (3) resize the images to 128×128 
pixels; (4) split the data into training and test sets with a 2:1 ratio. A dataset with a total of 2,084 images is 
built, and label statistics are shown in Table 1. Compared with the 𝜙-Net benchmarking experiments [8] and 
general CV applications, the dataset used in this study is considered imbalanced and under the low-data regime.  

Table 1 – Data statistics 

Label Training Test Split ratio 
NSP 1130 565 2 
SP 259 130 2 

Class ratio 4.4 4.3 - 

4.2 Experiment design and setting 
Besides the class imbalance issue, several other topics are also studied in this work. These are (1) the effects 
of different label ratios in the training set, and (2) the effects of different training pipelines, i.e., conventional 
training, training with semi-supervised learning, and conventional oversampling by augmenting the minority 
class with GAN-generated data. 

To investigate (1), a conventional multi-layer CNN discriminative classifier, denoted as the baseline 
(BSL), was compared with BSS-GAN, whose discriminator shares the same architecture with BSL (except the 
last Softmax layer). The details of the network configuration are presented in Section 4.3. Four magnitudes, 
namely 10%, 25%, 50%, and 100% of the training data, were used for supervised training in both the BSL and 
BSS-GAN. It should be noted that the labeled images were selected randomly, but the class label ratio (4:1) 
was still maintained. Moreover, for BSS-GAN training, the remaining data was treated as unlabeled and also 
fed into the network for semi-supervised training along with the labeled data. To control the experimental 
settings, both models were trained for 500 epochs with a batch size of 64. The optimizer is Adam [26] with an 
initial learning rate (LR) of 2×10��. The evaluation metrics herein are the overall accuracy, Eq. (10), and the 
true positive rate (TPR), Eq. (11), where SP is defined as “positive” and NSP as “negative.” 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = zb_L	�Ka'ScL	V	zb_L	�L0&'ScL
�_J�Lb	Kt	'K'&M	%&'&

 (10) 

 𝑇𝑃𝑅 = zb_L	�Ka'ScL
zb_L	�Ka'ScL	V	�&MaL	�L0&'ScL

 (11) 

As for (2), an ordinary DCGAN model was trained for generating synthetic SP images, which shares the 
same network architecture with BSS-GAN (except the last Softmax layer and the loss function as discussed in 
Section 3). Only the SP training images were fed into the model. Total training epochs was 80,000 by Adam 
optimizer with the same LR= 2×10��. A total of 871 synthetic SP images were manually selected from 
random sampling to augment the raw SP images. Finally, the dataset was oversampled as a balanced dataset, 
where the number of training data for both classes is 1,130. In this experiment, comparisons were made 
between BSL, BSL with GAN-based oversampled balanced dataset (denoted as GAN-Aug), and BSS-GAN 
with 100% labeled training data. The experiments were conducted on the TensorFlow platform on and 
performed on CyberpowerPC with single GPU (CPU: Intel Core i7-8700K@3.7GHz 6 Core, RAM:32GB and 
GPU: Nvidia Geforce RTX 2080Ti). 

4.3 Network architecture 
For a fair comparison, the discriminator of BSS-GAN uses the same architecture as BSL, e.g., number of layer 
and filter, filter sizes, etc., except the last Softmax layer, and its configuration is summarized in Tables 2 and 
3. According to findings in Radford et al. [15] and Gao et al. [12], Leaky ReLU [27] was used as the activation 
function with α = 0.2 , and batch normalization (BatchNorm) [28] was inserted after intermediate 
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convolutional layers (Conv) with momentum 0.8. To avoid overfitting, dropout [29] was also applied with a 
0.25 dropout rate. Similarly, the same generator architecture was used for both BSS-GAN and GAN-Aug, 
except the loss functions, where for the former we used Eq. (9) and for the latter we used the ordinary generator 
loss in [13,14]. Because the real image size is only 128×128, a conventional 100-dimensional noise vector 
was generated from normal distribution as the input to the generator. There is no dropout in the generator, but 
BatchNorm layers with momentum 0.8 were added after deconvolution (Deconv) layers except for the last one. 

Table 2 – Configuration of the discriminator  

Layer Filter size (#) Activation Shape Notes 
Input - - (N, 128, 128, 3) Input RGB images of size 128×128 
Conv 3×3 (32) Leaky ReLU (N, 64, 64, 32) Stride = 2, α = 0.2 

Dropout - - (N, 64, 64, 32) Dropout rate = 0.25 
Conv 3×3 (64) Leaky ReLU (N, 32, 32, 64) Stride = 2, α = 0.2 

BatchNorm - - (N, 32, 32, 64) Momentum = 0.8 
Dropout - - (N, 32, 32, 64) Dropout rate = 0.25 

Conv 3×3 (64) Leaky ReLU (N, 32, 32, 64) Stride = 1, α = 0.2 
Flatten - - (N, 32×32×64)  

Fc-layer - Softmax (N, c) BSS-GAN: c = 2+1; BSL:  c = 2 

Table 3 –Configuration of the generator 

Layer Filter size (#) Activation Shape Notes 
Input - - (N, 100) Random noise from Normal distribution 

Fc-layer - ReLU (N, 32×32×128)  
Reshape - - (N, 32, 32, 128)  
Deconv 3×3 (128) ReLU (N, 64, 64, 64) Stride = 2 

BatchNorm - - (N, 64, 64, 64) Momentum = 0.8 
Deconv 3×3 (64) ReLU (N, 128, 128, 3) Stride = 2 

BatchNorm - - (N, 128, 128, 3) Momentum = 0.8 
Deconv 3×3 (3) Tanh (N, 128, 128, 3) Stride = 1 

5. Results and Analysis 
5.1 Study on labeled data magnitude 
As the main purpose of the study, we investigate the classification performance of BSS-GAN compared with 
BSL under varying amounts of labeled training data, and the results are shown in Table 4 and Fig. 1. Fig. 1 
shows that as the number of labeled data increases, both models have an increasing trend, but BSS-GAN 
outperforms BSL for all cases. Due to the strong class imbalance in the experiment dataset, simply guessing 
all data as NSP leads to 81.29% overall accuracy. When only using low magnitudes (10% and 25%) of labeled 
data, even though both models’ accuracies are slightly over 81.29%, the results are not satisfactory. From 
Table 4, it is observed that the TPR of BSS-GAN is just over 50% and BSL is much worse, which only detected 
30% of SP images. It indicates that both models have strong biases to the majority NSP class. At 50% labeled 
ratio, BSS-GAN has improved performance with 6.76% over BSL in overall accuracy and 75.38% in TPR. At 
100% labeled ratio, the overall accuracy of BSS-GAN maintains the same level at around 92% (ignoring the 
0.43% drop due to numerical randomness), but the TPR of BSS-GAN reaches 83.85%, which is significantly 
higher than BSL. In other words, while feeding more labeled data to BSS-GAN, it is more sensitive and robust 
to detect the minority SP class with the trade-off of a slight accuracy decrease in NSP (the model is more 
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conservative by treating more NSP as SP). Such performance enhancement is meaningful and beneficial to 
practice, since high TPR and overall accuracy indicate a safer and more conservative model in SHM. 

Even though both BSL and BSS-GAN share the similar discriminative part, the dynamic data 
augmentation hidden in BSS-GAN (which originates from the interaction between the discriminator and the 
new synthetic data produced by the generator during training) and the contribution from the unlabeled images 
for feature learning significantly enhance the performance of the BSS-GAN’s discriminator. In conclusion, the 
results validate the effectiveness of using GAN with a semi-supervised learning mechanism under the 
conditions of data deficiency and strong class imbalance, which alleviates the bias issue faced by conventional 
CNN classifiers. 

 
(a) 

 
(b) 

Fig. 1 – Trends of BSS-GAN vs BSL for increasing amounts of labeled data. (a) Accuracy. (b) TPR. 

Table 4 – Classification performance of BSS-GAN and BSL for varying amounts of labeled data (%) 

Metrics Model 
Ratio of labeled data 

10% 25% 50% 100% 

Accuracy 
BSL 82.44 85.76 85.76 88.78 

BSS-GAN 86.62 87.10 92.52 92.09 

TPR 
BSL 30.77 29.34 46.92 59.23 

BSS-GAN 52.31 57.69 75.38 83.85 

5.2 Study on training pipeline 
Based on the experiments, using the GAN-augmented dataset, the overall accuracy of GAN-Aug is 87.49%, 
and the TPR is 71.54%. Furthermore, plots of the confusion matrix (CM) with respect to three pipelines are 
presented in Fig. 2. Comparing with BSL and BSS-GAN, the overall accuracy of GAN-Aug is lower than both 
and the TPR is between the two. This observation can be partially explained through using a balanced dataset 
where the model is less likely to be trained biased towards a single class, as opposed to BSL which is trained 
on a strongly biased training set. Similar to BSS-GAN, the increased accuracy in detecting SP (TPR) makes 
GAN-Aug less sensitive to the NSP images. However, the accuracy improvement in SP does not compensate 
the accuracy decrease in NSP, which causes a decrease in the overall accuracy. In other words, even though 
the GAN-Aug classifier achieves a better TPR than BSL, it loses more capability to recognize the NSP images, 
which does not make it a better model than BSL. Therefore, this experiment provides another example showing 
that simply oversampling the raw dataset with GAN-generated data may not work as stated in Gao et al. [12]. 
On the contrary, in this experiment, BSS-GAN achieves both higher overall accuracy and TPR than the other 
two, making it a state-of-the-art GAN-related pipeline. 

As for computational efficiency, the training time costs for BSL, BSS-GAN and GAN-Aug with the full 
dataset are approximately 0.75 hour, 1.5 hours and 2 hours, respectively. In general, BSL spends the least time, 
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but considering its poor performance, this value is not contrastively meaningful. Compared to BSL, BSS-GAN 
needs to train extra parameters in the generator and the generator also needs additional computational resources 
to synthesize images from the noise vectors. These additional operations demand extra time, which is still 
acceptable. Especially when compared with GAN-Aug, BSS-GAN speeds up by 25%, which indicates its high 
potentials in efficiency improvement over other GAN-based methods. 

(a) (b) (c) 
Fig. 2 – Confusion matrix of different pipelines. (a) BSL. (b) GAN-Aug. (c) BSS-GAN. 

5.3 Study on synthetic image quality 
In this section, synthetic images generated by both BSS-GAN and GAN-Aug are shown in Fig. 3. In general, 
no model collapse issues occurred in either result and the synthetic images have good visual variety. However, 
the visual quality of images generated by GAN-Aug, Fig. 3(b) is much better than that of the BSS-GAN, Fig. 
3(c), and this observation can be explained by several factors. 

Unlike the mechanisms in ordinary GAN, the loss function in BSS-GAN focuses more on classification 
than image generation (reflected by the supervised cross-entropy loss); on the contrary, the ordinary GAN only 
includes the unsupervised loss, which is more about feature learning than classification. The different training 
objectives influence the performance of the generator even though the same generator architecture is used. 
Therefore, it can be inferred that the improvement in the discriminator’s classification abilities may weaken 
the generator when the classification task of the discriminator increases from binary to K+1 classes.  

(a) (b) (c) 
Fig. 3 – Sample images from (a) real SP images, (b) GAN-Aug generated images, and (c) BSS-GAN 

generated images. 

According to Gao et al. [12], structural images have a complex and mixed distribution, which makes 
ordinary GAN hard to generate clear and class-discriminative images. However, through conditioning, e.g., 
considering class information related to a specific class of images makes ordinary GAN generate higher quality 
images towards that class. In GAN-Aug pipeline, only feeding pixel level SP images during GAN training can 
be viewed as one conditioning operation, which significantly reduces the complexity of the data distribution. 
Thus, in Fig. 3(b), the synthetic SP images show very realistic visual qualities. On the contrary, the generator 
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in BSS-GAN was trained with both NSP and SP images in an unsupervised manner, thus it has to learn a mixed 
distribution from both NSP and SP. As a result, synthetic images generated by BSS-GAN can be viewed as 
either in NSP, SP or the intermediate state. To show this, in Fig. 3(c), synthetic images in the first row are 
smooth and resemble NSP, and the remaining images show some blurry, damage-like features, e.g., cracks and 
dark spots. 

In summary, if only focusing on the synthetic image quality, ordinary DCGAN with class conditioning 
has a better image generation ability than BSS-GAN under 128×128 pixels. But according to the experimental 
feedbacks in classification performance, it can be inferred that even though synthetic images by BSS-GAN are 
not clear enough and less realistic, the learned features and patterns from these generated images may still 
contribute to the learning process of the discriminator in the semi-supervised learning pipeline, improving both 
the training efficiency and the discriminative performance. 

6. Conclusions and Extensions 
In this study, we firstly pointed out two key issues impeding the application of DL in vision-based structural 
damage assessment, namely data deficiency and class imbalance. As an alternative method to TL and 
conventional DA, GAN-based augmentation was discussed. In order to improve the efficiency of using GAN 
in the classification task, a semi-supervised learning GAN pipeline along with the balanced batch sampling 
technique was introduced, named BSS-GAN. Under the imbalance-class and low-data regime, a series of 
computer experiments with respect to reinforced concrete cover spalling detection, which is one of the most 
basic damage assessment tasks in vision-based SHM, were designed and conducted. 

To investigate the discriminative capability, under different magnitudes of labeled data, BSS-GAN was 
compared with BSL, which shares the same discriminative network architecture. It is observed that BSS-GAN 
outperforms BSL in both overall accuracy and TPR at all labeled ratios (especially at 50%), which validates 
the effectiveness of BSS-GAN under the above-mentioned constraints. Furthermore, using the whole training 
dataset as labeled data, BSS-GAN was compared with another GAN-based pipeline, namely GAN-Aug, which 
oversamples the minority class (SP) with synthetic data generated by an ordinary DCGAN until reaching the 
same amount of majority class (NSP), and trains the BSL with this balanced dataset. The results indicate that 
GAN-Aug improves the TPR compared with BSL by using more SP images, but it is still ~10% lower than 
BSS-GAN. Moreover, it sacrifices the performance in detecting NSP image, which leads to the decrease of the 
overall accuracy (which is far lower than BSS-GAN). Therefore, in our experiments, BSS-GAN achieves the 
state-of-the-art classification performance over both BSL and GAN-Aug. 

In our preliminary study, there still exist several factors that need to be explored. By computer 
experiments, BSS-GAN was only shown to be effective under the low-data regime, more experiments need to 
be conducted for medium-data regime or even large datasets, which can be realized by continuing the efforts 
in collecting and labeling structural images in practice. Moreover, only one CNN architecture was tested in 
this paper, and more parametric studies with respect to network architecture are expected. 

In conclusion, the presented promising results by BSS-GAN shed light on the high potentials of semi-
supervised GAN in vision-based damage assessment and SHM. This is clearly worth significant explorations 
and research efforts in the future. 
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