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Summary

In recent years, deep learning with convolutional neural networks to assess structural
damages has gained growing popularity in vision-based structural health monitor-
ing (SHM). However, large-scale structural image data acquisition and annotation
processes are often costly in SHM. Moreover, the collected datasets are usually
highly imbalanced in practice, because images of damaged structures/components
are far rarer than those of intact ones. Hence, both data deficiency and class-
imbalance hinder the practical performance. Common mitigation strategies include
transfer learning, over-sampling, and under-sampling, yet these ad-hoc methods only
provide limited performance boost that varies case by case. In this work, we intro-
duce one variant of Generative Adversarial Network (GAN), named the Balanced
Semi-supervised GAN (BSS-GAN). It adopts the semi-supervised learning con-
cept and applies the balanced-batch sampling in training to relieve the low-data and
imbalanced-class issues. A series of computer experiments on concrete cracking and
spalling classification were conducted under low-data imbalanced-class regime with
limited computing power. The results show that the BSS-GAN is able to achieve
better damage detection performance (in terms of recall and F-� score) than other
conventional methods, indicating its state-of-the-art performance.
KEYWORDS:
Structural damage assessment, Semi-supervised learning, GAN, Low-data, Imbalanced-class

1 BACKGROUND &MOTIVATIONS

Nowadays, Machine Learning (ML) and Deep Learning (DL)
lead the fashion and have benefited researchers of many dis-
ciplines. Since 2017, there has been an increasing number of
DL studies and applications in civil and structural engineer-
ing. (Cha, Choi, & Büyüköztürk, 2017; Gao & Mosalam,
2018; Mosalam, Muin, & Gao, 2019; Oh, Kim, Kim, Park, &
Adeli, 2017; Rafiei & Adeli, 2017; Yeum, Dyke, & Ramirez,
2018). Particularly, for vision-based structural health monitor-
ing (SHM), the convolutional neural network (CNN) is proven
to be a promising approach with high practical potential (Cha
et al., 2017; Cha, Choi, Suh, Mahmoudkhani, & Büyüköztürk,

2018; Deng, Lu, & Lee, 2020; Gao, Li, Mosalam, & Günay,
2018; Gao & Mosalam, 2018; Jiang & Zhang, 2019; Liang,
2019; Maeda, Sekimoto, & Seto, 2016; Yeum et al., 2018;
A. Zhang et al., 2017; C. Zhang, Chang, & Jamshidi, 2020).
However, the frameworks in past studies are subject to three
real-world challenges: (1) insufficient data, (2) imbalanced
classes, and (3) limited computing power.
Most of the current DL applications in vision-based SHM

fall into the supervised learning category, e.g., image classi-
fication (Cha et al., 2017; Gao & Mosalam, 2018), damage
localization (Cha et al., 2018; Xue & Li, 2018) and segmen-
tation (Yang et al., 2018), which requires a substantial amount
of labeled data to reach the desired performance level. Obtain-
ing large-scale labeled structural image datasets is costly and
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labor-intensive. Compared with popular computer vision (CV)
benchmark datasets such as ImageNet (1.5 million images)
(Deng et al., 2009), MNIST (70,000 images) (LeCun, Bot-
tou, Bengio, & Haffner, 1998) and CIFAR-10 (70,000 images)
(Krizhevsky, 2009), current vision-based SHM datasets are far
smaller. Although many previous studies (Cha et al., 2017;
Dorafshan, Thomas, & Maguire, 2018) heavily relied on crop-
ping techniques in hopes of augmenting the datasets, the
cropped images had poor variety of invariant features, as they
were sourced from similar scenarios in limited numbers of
raw images. Additionally, the high similarity between cropped
images in the training and test sets poses a risk of data leak-
age, as the model will memorize features in the training set
that are simply repeated in the test set, which may exaggerate
the model performance in real-world applications. Herein, the
term “insufficient” has two meanings, namely the lack of data
quantity and the lack of feature variety.
There also exists an imbalanced-class issue, which stems

from the very nature of SHM: structural damages (due to
either natural deterioration or extreme events such as earth-
quakes) are low-frequency occurrences. In real-world SHM
image collection processes, damage-related data (e.g., crack-
ing and spalling) usually only make up a small portion, and
thus the majority of the data belong to the undamaged state.
This leads to imbalanced datasets and further causes the model
to be biased in favor of the “undamaged" class. On top of
the already-existing low-data issue, the small "damaged" data
portion easily leads to model overfitting (especially for high-
dimensional image data). The impact of imbalanced datasets
on DL performance in SHM has not been thoroughly studied,
as many previous studies avoided this issue by constructing
and training on balanced datasets.
Besides these two major issues, computing power limita-

tions create another daunting challenge for efficiently training
classification models. DL has benefited from the advance-
ment of high-performance Graphics Processing Unit (GPU),
the lack of which however becomes a curse in real-world appli-
cations. For example, the limited payload/carry-on capacity of
a given small Unmanned Aerial Vehicle (UAV) (Villa, Gon-
zalez, Miljievic, Ristovski, & Morawska, 2016) due to budget
limits or external environmental factors forbids the deployment
of high-performance GPUs and supporting modules. Thus, to
be able to conduct real-time recognition/inference with limited
hardware, the network architecture needs to be degraded to a
shallow, lightweight design, e.g., MobileNet (Howard et al.,
2017), which, however, will compromise the classification per-
formance. Besides, it is also worth noting that to pursue a better
recognition performance, the network architectures (e.g., num-
ber of layers and number of filters) in past studies were usually
designed and tuned specifically for their respective datasets

after many trials and iterations. Tuning model parameters is
costly, and may not be generic in practice.
Transfer learning (TL), over-sampling by conventional data

augmentation (DA)methods, and under-sampling are common
strategies to address the low-data and imbalanced-class issues.
In TL, by tuning parameters from a pre-trained model, the new
model can adapt to the target domain relatively easily, where
the parameters in the early layers inherit certain knowledge
from basic features in the source domain, making the model
less dependent on extensive amounts of data (Pan & Yang,
2009). However, TL requires a pre-trained and open-source
model from a source dataset, e.g., VGGNet (Simonyan & Zis-
serman, 2014) and ResNet (K. He, Zhang, Ren, & Sun, 2016)
trained from the ImageNet dataset. Pre-trained networks are
sometimes inaccessible for customized network designs and
are usually computationally expensive to tune, e.g., VGGNet
contains a large amount of trainable parameters. Moreover, TL
only aims to mitigate the data deficiency problem and may not
be sufficient to address the imbalanced-class issue.
In over-sampling, the minority-class data are over-sampled

to reduce the majority-to-minority ratio by randomly duplicat-
ing minority-class samples or performing certain transforma-
tions or pre-processing operations, e.g., translation, flip, scale,
whitening, and adding noise. The over-sampled minority class
data are then mixed with the majority-class data to build a rel-
atively balanced dataset (H. He & Garcia, 2009). However,
conventional DA can only generate highly-correlated data,
which does not increase feature variety, and additional stor-
age space is needed for the over-sampled data. For some cases,
inappropriately settings of DAmight even lead to performance
drops (Gao & Mosalam, 2020).
In under-sampling, majority-class data are randomly

dropped to reduce the majority-to-minority ratio, which forms
a balanced dataset with smaller size H. He & Garcia (2009).
However, under-sampling may lead to an untrainable manner
of the DL model or cause performance degradation due to
information loss by ruling out a large amount of data.
Besides conventional methods above, Generative Adversar-

ial Network (GAN) is considered an alternative DA method,
where GAN generates synthetic data to augment the existing
dataset and potentially enhance themodel’s performance (Gao,
Kong, &Mosalam, 2019; I. Goodfellow et al., 2014; Salimans
et al., 2016). Compared to TL, common GANs have simpler
architectures and fewer trainable parameters than pre-trained
DL models from ImageNet, which makes GANs applicable to
custom-designed lightweight networks and less demanding for
computing power. Compared with conventional DA, GAN can
generate new data unseen by themodel, increasing data variety.
In vision-based SHM, there exist a few early GAN stud-
ies (Gao & Mosalam, 2020; Maeda, Kashiyama, Sekimoto,
Seto, & Omata, 2020), and very little attention was directed
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towards the imbalanced-class issue. In addition, the proposed
GAN-based pipeline in (Gao et al., 2019) for classification
problems is computationally inefficient. According to the find-
ings in relevant GAN-based classification studies (Madani,
Moradi, Karargyris, & Syeda-Mahmood, 2018b; Salimans et
al., 2016), the semi-supervised learning mechanism exploits
the features of the unlabeled data more thoroughly, simultane-
ously increasing the model’s data generation and classification
capabilities. Therefore, this has motivated us to convert the
GAN into a semi-supervised variant.
Exploring GAN in practical engineering is still an open-

ended discussion, and investigating the GAN-based methods
in vision-based SHM is the main focus of this study. The main
contributions of this work are:

• To simulate the restrictions of (1) low-data and (2)
imbalanced-class, an extremely biased dataset contain-
ing limited images of undamaged state (UD), crack (CR)
and spalling (SP) was built. To simulate the restriction of
(3) limited computational resources, all pipelines were
built on top of a shallow and general CNN classifier.

• One of previously proposed GAN-based classification
pipeline, namely synthetic data fine-tuning (SDF) (Gao
et al., 2019), was revisited herein with heuristic reason-
ing.

• A novel GAN-based classification pipeline with semi-
supervised learning and balanced-batch sampling tech-
nique, namely the balanced-batch semi-supervisedGAN
(BSS-GAN), was proposed.

• Comparative computer experiments were conducted
among BSS-GAN, baseline CNN (BSL), BSL using
over-sampling, BSL with under-sampling, and other
GAN-based augmentation methods.

• This study demonstrates that BSS-GAN improves the
damage detection performance in terms of recall and F-
� score and outperforms the above-mentioned methods
under low-data and imbalanced-class regime.

This paper is organized as follows. Section 2 provides a liter-
ature review related to this study. Section 3 introduces several
GAN-based augmentation methods. Section 4 describes the
experimental objectives, dataset, evaluation metrics, network
configuration and setups. Section 5 presents the experimental
results and analysis. Finally, Section 6 delivers the conclusions
and extensions of this study.

2 RELATEDWORK

The concept of GAN was first introduced by I. Goodfellow et
al. (2014), which is a generative model that generates new data

from the learned distribution. Unlike conventional DLmodels,
GAN consists of two networks, namely the generator and the
discriminator, where the generator creates synthetic data and
the discriminator classifies an input sample as “real” or “syn-
thetic.” GAN uses adversarial training, where each network
aims to minimize the gain of the opposite side while maximiz-
ing its own. Ideally, both the generator and the discriminator
converge to the Nash equilibrium (I. Goodfellow, 2016), where
the discriminator gives equal predictive probabilities to real
and synthesized samples. Until now, GAN has been applied to
many computer vision (CV) tasks, e.g., fake image generation
(Radford,Metz, &Chintala, 2015), image-to-image translation
(Isola, Zhu, Zhou, & Efros, 2017), and medical imaging syn-
thesis, reconstruction, and classification (Yi, Walia, & Babyn,
2019).
In recent years, researchers start to use GAN to improve

the DL model performance under the constrictions of low-
data and imbalanced classes. In the general CV field, Anto-
niou, Storkey, & Edwards (2017) proposed Data Augmenta-
tion GAN (DAGAN), which overcomes the target domain’s
class imbalance issue by first finding representations of the
source domain that are meaningful to generate other related
data and then augmenting the target domain by new samples
generated from the learnt representations. The performance
of DAGAN-trained classifier was compared with other basic
ones onOmniglot (Lake, Salakhutdinov, &Tenenbaum, 2015),
EMNIST (Cohen, Afshar, Tapson, & Van Schaik, 2017) and
VGG-Face (Parkhi, Vedaldi, & Zisserman, 2015) datasets
using low-data setting and was shown to have promising
enhancements. Mariani, Scheidegger, Istrate, Bekas, & Mal-
ossi (2018) proposed Balancing GAN (BAGAN) as an aug-
mentation tool to restore balance in imbalanced datasets such
that it can learn useful features from the majority classes and
uses these to generate images for theminority classes. BAGAN
was shown superior to ordinary GAN in terms of generated
minority-class image quality and variability with imbalanced
datasets. X. Zhang, Wang, Liu, & Ling (2019) introduced
Deep Adversarial Data Augmentation (DADA) and formu-
lated the DA problem into a supervised class-conditional GAN
by developing a 2K discriminator loss function (where K is
number of total classes), and enforced the generation of class-
specific images. By generating images that are discriminable
among classes, the discriminator can learn consistent decision
boundaries from both real and synthetic data, which in turn
improves the classification performance. The experimental
results endorsed the superior capability of DADA in enhancing
the generalization ability of DL models in extremely low-data
regime. However, image data used in these studies are from
general-purpose and well-cleaned CV datasets, which may not
reflect the real environmental factors in practical scenarios.
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As for real-world applications, GAN-based DA methods
were also investigated in the medical imaging community.
Frid-Adar, Klang, Amitai, Goldberger, & Greenspan (2018)
applied Deep Convolutional GAN (DCGAN) to generate syn-
thetic medical images for three lesion classes (Cysts, Metas-
tases, and Hemangiomas) and then augmented the real image
dataset by the generated images. It achieved 7% improvement
over conventional DA. Similarly, for cardiovascular abnormal-
ity detection,Madani,Moradi, Karargyris, & Syeda-Mahmood
(2018a) first down-sampled chest X-Ray images to 128×128
pixels and then used a variant of GAN to generate synthetic
images to enrich the raw dataset. With the mixed images,
the DL classifier reached a roughly 2% improvement over
the non-augmented baseline and 1% over conventional DA.
Furthermore, Madani et al. (2018b) formatted the GAN in
a semi-supervised learning manner and conducted compara-
tive experiments to investigate the effectiveness of their model
under different magnitudes of labeled data. Their results indi-
cated the high efficiency of such GAN pipeline under the
low-data regime.
Instead of detecting human health conditions from medi-

cal images, vision-based SHM detects the health conditions
of the structures. However, there only exist limited studies of
vision-based SHMusingGAN. The first documentedworkwas
conducted by Gao et al. (2019) where they designed a spe-
cific DCGAN architecture for structural images and proposed
a leaf-bootstrapping training method to improve the quality
of the synthesized images. Furthermore, based on validation
experiments under low-data regime and limited computational
resources, it was found that simply mixing synthetic images
with the real ones did not work well, and might even lead
to worse performance. Therefore, a special union training
pipeline, namely synthetic data fine-tuning (SDF), was pro-
posed, where the DL classifier was pre-trained on generated
synthetic images and then fine-tuned by real ones. Such train-
ing pipeline was able to enhance the classifier performance
by nearly 7% over the baseline. Recently, Maeda et al. (2020)
applied GAN on road damage detection. They combined a
progressive growing GAN (PG-GAN) (Bowles et al., 2018)
along with Poisson blending, and then artificially generated
road damage images used as new training data to improve the
accuracy of road pothole detection tasks. However, as early
studies, the above-mentioned works are still preliminary. They
are computationally inefficient, because both the GAN and the
CNN classifier need to be trained, and large amounts of synthe-
sized images are generated, consuming extra computation time
and storage space. Therefore in this work, we are motivated to
reformulate the GAN in a more efficient semi-supervised fash-
ion. Additionally, we also considered the class imbalance issue
which has not been thoroughly investigated in previous studies.

3 GAN-BASED AUGMENTATION
METHODS

3.1 Basics of GAN
GAN consists of a minimax game between the generator and
the discriminator. Let x ∈ ℝd be a sample, then xr ∼ pdata
is a sample from the the real data distribution and xg ∼ pg
is a generated sample from the GAN-learned, synthetic data
distribution. The generator G with parameters �G is trained
to synthesize samples that mimic the real sample distribution,
pdata, by mapping the noise vector (latent variable), z ∼ pz, to
a synthesized sample xg = G(z; �G), xg ∼ pg . The discrimina-
torD with parameters �D takes in a sample x ∈ ℝd (either real
or synthesized) and outputs D(x; �D), which is the predictive
probability that x comes from pdata rather than pg .
During the training, G and D compete with each other

according to:
min
G

max
D

Ex∼Pdata(x)
[

log(D(x))
]

+Ez∼Pz(x)
[

log(1 −D(G(z)))
]

(1)
In Equation (1), the first term is the negated cross-entropy

between pdata(x) and D(x), whose value is positively associ-
ated with D’s ability of correctly predicting real samples as
from the real data distribution pdata(x); the second term is the
negated cross-entropy between pz(z) and 1 − D(G(z)), where
1 − D(G(z)) is D’s predictive probability that a synthesized
sample xg = G(z) is indeed considered as “synthetic,” i.e.,
xg ∼ pg .D aims to maximize its discriminative power charac-
terized by both terms, while the generatorG tries to undermine
D’s performance by synthesizing realistic samples to trick D
(minimizing the second term).
Both D and G can be parametrized by deep neural net-

works or CNNs, and they are trained and optimized alterna-
tively according to Equation (1) until reaching the optima or
designated number of iterations.

3.2 Synthetic data over-sampling
GAN can be used to generate new data, which is thought to
be useful in enriching the dataset. Therefore, one straight-
forward way is to over-sample the minority-class data by
GAN-generated data to reduce the majority-to-minority ratio.
This is named the GAN-based synthetic data over-sampling
(GAN-OS), Figure 1.
However, preliminary investigations have demonstrated that

such aggregation may sometimes render worse performance
(e.g., more severe over-fitting) in the test set (Gao et al.,
2019; Jain, Manikonda, Hernandez, Sengupta, & Kamb-
hampati, 2018). Several possible reasons are: relatively lower
image quality compared to the real ones, inherent data biases,
and possible distribution differences between the synthetic and
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Generate
synthetic data

GAN

Synthetic data

Classifier

Mix real majority,
real minority,

& synthetic data

Majority Minority

Real data

FIGURE 1 Illustration of GAN-based synthetic data over-
sampling (GAN-OS) pipeline

the real ones. In our opinion, the dominating failure factor is
the false sense of building a series pipeline.
The generated data are thought of as the fixed realization

of the extra parameters introduced by the GAN model. From
Figure 1, feeding a mixture of real and synthetic data into the
classifier builds a series pipeline that passes the output of the
GANmodel followed by the real data into the classifier, which
introduces additional parameters to the original classifier. Even
though the generated data increase the number of data and
possible variety, if the original classifier already suffers from
over-fitting due to data deficiency, the additional parameters
introduced to the series pipeline will increase the risk to fur-
ther exacerbate the over-fitting, such as the case in (Gao et al.,
2019).

3.3 Synthetic data fine-tuning (SDF)
To alleviate over-parametrization in GAN-OS, Gao et al.
(2019) proposed a pipeline based on TL, namely SDF. In SDF,
aweak classifier is firstly pre-trained on the generated synthetic
images and then fine-tuned by the real ones, Figure 2.
The intuition of the SDF pipeline is explained as follows.

Using a weak or non-classic CNN classifier under computing
power limitations usually implies that such a classifier does not
have pre-trained parameters from ImageNet or other datasets
in the source domain. Instead, its initialization fully depends
on random, Gaussian, or other initialization approaches, e.g.,
Xavier initialization (Glorot & Bengio, 2010), which may be
poor due to the large random parameter space. Conceptually,
it is difficult to learn the decision boundary well by directly
training from such initialization as illustrated in Figure 3.
When considering the SDF pipeline, regardless of the cor-
rectness of the generated synthetic images, these images can

Generate synthetic 
data

Pre-trained by 
synthetic data

GAN

Real data

Synthetic data

Pre-trained classifier
Fine-tune

classifier by 
real data only

Fine-tuned classifier

FIGURE 2 Illustration of SDF pipeline

be thought of as being generated from a similar or enlarged
sample space, which origins from the real raw data. There-
fore, it is believed that the classifier, when pre-trained from
such enlarged space, can provide a better initialization for the
subsequent fine-tuning step with the real data.

3.4 Balanced-batch Semi-supervised GAN
(BSS-GAN)
The original GAN is trained in an unsupervised learning man-
ner, and its discriminator only differentiates unlabeled real
samples from those synthesized by the generator. Herein,
following the concept in (Salimans et al., 2016), a semi-
supervised GAN can be formulated, where the output dimen-
sion (size) of the discriminator increases from 2 (“real” or
“synthetic”) to K + 1 such that the discriminator can classify
samples fromK real classes (for samples in pdata(x, y)) and one
“synthetic” class (for generated samples in pg). Besides labeled
data from pdata(x, y), the model can also utilize the unla-
beled data from pdata(x) simultaneously. These characteristics
illustrate the core concept of semi-supervised learning.

3.4.1 Discriminator loss
For each input sample x (either from pdata1 or from pg),
the discriminator D outputs a (K + 1)-dimensional predic-
tive probability vector pmodel(y|x), where pmodel(y = i|x) =
exp(D(x)i)∕

∑K+1
j=1 exp(D(x)j) represents the predictive prob-ability of the i-th class and the D(x)1,… , D(x)K+1 are logits

output byD(x) corresponding to each class. Herein, pmodel(y =
K + 1|x) represents the predicted probability that sample x is
“synthetic”, and D(x) in Equation 1 can be substituted by 1 −

1Pdata is a general form for both Pdata(x) and Pdata(x, y).
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Augment sample space 
with synthetic data 

Train from
scratch

Pre-train only with
synthetic data 

Fine-tune only with
real data 

Initialize the classifier with
pre-trained parameters

Synthetic Data Class 0

Synthetic Data Class 1

Real Data Class 1

Real Data Class 0

FIGURE 3 Two learning modes of conventional training and SDF

pmodel(y = K+1|x). Similarly, 1−D(G(z)) in the second term
of Equation 1 is equivalent to pmodel(y = K + 1|G(z)). Then
both terms are negated to form a minimization problem of D.
The unsupervised loss without using any label information for
K + 1 classes is derived as:

L(D)unsupervised = −Ex∼Pdata log(1 − pmodel(y = K + 1|x))

− Ex∼Pg log(pmodel(y = K + 1|x))
(2)

It is noted that in Equation 2, since label information is not
required, both labeled and unlabeled data can be used for the
purpose of unsupervised feature learning.
For real and labeled data, the supervised discriminator loss

is the cross-entropy between the real data-label distribution
pdata(x, y) and the model’s predicted label distribution for K
real classes (given real input sample x), pmodel(y|x, y < K+1):

L(D)supervised = −Ex,y∼Pdata(x,y) log(pmodel(y|x, y < K + 1)) (3)
Finally, the total discriminator loss is expressed as follows:

L(D) = L(D)unsupervised + L
(D)
supervised (4)

3.4.2 Generator loss
The generator’s objective is to “weaken” the discriminator’s
performance. However, the original formulation of the gener-
ator loss (I. Goodfellow et al., 2014) usually does not perform
well. This is because the generator’s gradient vanishes when
the discriminator has high confidence of distinguishing gener-
ated samples from the real samples, i.e., when D(G(z)) → 0.
Therefore, the generator loss used in our formulation refers to
the heuristic loss (I. Goodfellow, 2016), Equation 5.

L(G)ℎeuristic = −
1
2
Ez∼pz logD(G(z)) (5)

Instead of minimizing the expected log-probability of the
discriminator being correct, the generator now maximizes

the expected log-probability of the discriminator making a
mistake, i.e., assigning a “real” label to a generated sam-
ple G(z). In this study, the constant multiplier in Equation
(5), i.e., 1

2
, is dropped and Ez∼pz logD(G(z)) is substituted

byEz∼pz log[1 − pmodel(y = K + 1|G(z))] to accommodate the
(K + 1)-dimensional discriminator output, Equation. 6

L(G)ℎeuristic = −Ez∼pz log[1 − pmodel(y = K + 1|G(z))] (6)
Feature matching is a technique that prevents over-training

the generator and increases the stability of the GAN (Sali-
mans et al., 2016). It requires the generator to produce samples
which result in similar features on an intermediate layer of the
discriminator network as do the real samples. Therefore, the
generator loss considering feature matching is formulated as:

L(G)feature matcℎing =
‖

‖

‖

Ex∼pdata(x)f (x) − Ez∼pz(z)f (G(z))
‖

‖

‖

2

2
(7)

where f (x) is the activation of an intermediate layer of the
discriminator for a given sample x. In this study, f (x) is
defined by the ReLU (Nair & Hinton, 2010) activation on the
flattened output of the last convolutional (Conv) layer of the
discriminator network.
Finally, combining L(G)ℎeuristic and L(G)feature matcℎing , the total

generator loss is:
L(G) = L(G)ℎeuristic + L

(G)
feature matcℎing (8)

3.4.3 Balanced-batch sampling
Class-imbalance issue not only affects the classification per-
formance, but also deteriorates the perceptual quality and
diversity of the generated samples (Mariani et al., 2018). Dur-
ing the conventional training (updating) procedure of a DL
classifier or GAN, mini-batch gradient descent is commonly
adopted (I. Goodfellow, Bengio, & Courville, 2016). Due to
computational limitations, instead of using all the data at once,
the DL network is only fed with one small batch containing m
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data samples randomly selected from the full dataset of size
N , wherem is called the batch size andm < N . Statistically, if
the dataset is imbalanced, the batch is also imbalanced, which
eliminates neither the performance bias of the classifier nor the
training instability of GAN.
Therefore, we introduce a small trick, namely balanced-

batch sampling in training. As its name suggests, while form-
ing the batch, the same amount of data is randomly sampled
from each class. For balanced-batch sampling inGAN training,
two types of balances are maintained in a given batch, namely
(1) the balance among real classes in the labeled data, (2) the
balance between any particular real class and the “synthetic"
class. (1) means that nl real labeled samples are randomly
selected fromK real classes, where nl1, nl2,… , nlK are the num-
bers of data from each class, and nl1 = nl2 = ⋯ = nlK =
nl∕K . (2) means that the total amount of generated samples ng
matches any of the sub-batches from a certain real class, i.e.,
ng = nl∕K = nlk, k ∈ {1, 2, ..., K}. In other words, each of the
K + 1 classes contributes a sub-batch of the same size to the
whole batch: m = nl + ng = (K + 1) ⋅ nl∕K .
Moreover, the BSS-GAN can also utilize the unlabeled

data in feature learning as by Equations 2 & 7. If additional
unlabeled data are available, in any given batch, the ratio of
unlabeled samples to any single-class sub-batch is controlled
by a hyper-parameter c, i.e., nul = c ⋅ nl∕K . In this study, to
keep a smaller batch size to simulate computational limitation,
c = 1 is used. Therefore, in each batch, m = nl + ng + nul =
(K + 2) ⋅ nl∕K .

3.4.4 BSS-GAN algorithm
By formulating the GAN in a semi-supervised learning set-
ting and using the balanced-batch sampling technique, the
proposed integrated model is named the BSS-GAN. The BSS-
GAN builds an end-to-end pipeline for both synthetic image
generation and classifier training, and it is expected to have a
stable and less biased performance under highly imbalanced
datasets. Moreover, unlike training a supervised learning-
based DL classifier, unlabeled data are also put into use. One
example of using BSS-GAN in concrete crack detection is
illustrated in Figure 4.
For a training batch size ofm, the detailed training procedure

of the BSS-GAN is as follows:
Step 0: Initialize the discriminatorD and the generatorGwith

�D and �G, respectively.
Step 1: A subset of the batch represented by real data (both

labeled and unlabeled) is formed, Br = Blr
⋃

Bulr =
{(xl1, y

l
1),… , (xlnl , y

l
nl
)}
⋃

{xul1 ,… , xulnul}, where nl data-label pairs are equally sampled from the K real classes.

Step 2: Random noise vectors, z = {z1,… , zng}, are sampled
from the noise prior pg(z). Then z is fed to G to gener-
ate nl∕K synthetic samples, Bg = {G(z1),… , G(zng )},which is the remaining subset of the batch.

Step 3: Feed Br to D. For each xi ∈ Br, i ∈ {1,… , nl + nul},
D outputs a K+1-dimensional probability vector, ui =
[pmodel(y = j|xi),∀j ∈ {1,… , K + 1}]T .

Step 4: Feed Blr to D. For each (xli, yli) ∈ Blr, i ∈ {1,… , nl},
D outputs a (K + 1)-dimensional probability vector.
However, only the first K dimensions are considered,
vi = [pmodel(y = j|xli, j < K + 1),∀j ∈ {1,… , K}]T .

Step 5: Feed Bg to D. For each G(zi) ∈ Bg , i ∈ {1,… , ng},
D outputs a K+1-dimensional probability vector wi =
[pmodel(y = j|G(zi)),∀j ∈ {1,… , K + 1}]T .

Step 6: Compute the discriminator loss, L(D):

L(D) = − 1
nl + nul

nl+nul
∑

i=1
log(1 − pmodel(y = K + 1|xi))

− 1
ng

ng
∑

i=1
log(pmodel(y = K + 1|G(zi)))

− 1
nl

nl
∑

i=1
log(pmodel(y = yli|x

l
i))

(9)
Step 7: Compute the generator loss, L(G):

L(G) = − 1
ng

ng
∑

i=1
log[1 − pmodel(y = K + 1|G(zi)]

+‖‖
‖

1
nl + nul

nl+nul
∑

i=1
f (xi) −

1
ng

ng
∑

i=1
f (G(zi))

‖

‖

‖

2

2

(10)

Step 8: Optimize and update the network parameters �D and
�G, where � is the learning rate.

�D ← �D − � ⋅ ∇�DL
(D) (11)

�G ← �G − � ⋅ ∇�GL
(G) (12)

Repeat steps (1) to (8) until convergence is achieved or the
designated number of iterations is reached.
Balanced-batch sampling is only adopted in training. Once

the BSS-GAN is trained, when referencing or predicting new
data for classification purpose, all new data are fed into D
only, and the predicted class is the one with the highest pre-
dictive probability among the firstK entries of theD’s output.
Similarly, for synthetic data generation, the noise vector z is
sampled and fed into G, which then outputs the synthetic data.
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FIGURE 4 BSS-GAN pipeline in concrete crack detection

4 EXPERIMENTAL PREPARATION

4.1 Experimental objectives
In subsequent computer experiments, we aim to examine BSS-
GAN’s performance under low-data and imbalanced-class
regimes on one common task in vision-based SHM, namely
the concrete damage detection. Three key statuses, namely (1)
undamaged state (UD), Figure 5a, (2) cracked (CR), Figure
5b, and (3) spalling (SP), Figure 5c, are considered, describing
three damage levels in the order of increasing corrosion risk. In
real-world applications, the class ratios of UD/CR and UD/SP
are usually high. To simulate such imbalances in a realistic
SHM data collection, an empirical ratio of 32:2:1 (UD:CR:SP)
is selected for experimental purposes, where we also treat SP
as less frequent than CR. Three major validation experiments
are designed:

1. Binary crack detection with class a ratio of 16:1 between
UD and CR.

2. Binary spalling detection with class a ratio of 32:1
between UD and SP.

3. Trinary damage pattern classification with a class ratio
of 32:2:1 among UD, CR and SP.

Experiments (1) & (2) simulate the real-world binary dam-
age detection in vision-based SHM, where the number of
“undamaged” cases (UD) far exceeds that of “damaged” cases
(CR or SP). Experiment (3) integrates the above two dam-
age cases into a comprehensive but more complex three-class
classification, which aims to evaluate the DL models in an
imbalanced multi-class problem.
For a comparative study, in each experiment, multiple GAN-

based pipelines are configured and compared:
1. A baseline shallow CNN classifier (BSL).

2. BSL with under-sampling the majority-class data to
restore the class balance (BUS).

3. BSL with over-sampling minority-class data through
conventional DA such as flips, translation and rotation
(BOS-DA).

4. BSLwith over-sampling the minority-class data by ordi-
nary GAN-generated data (BOS-GAN).

5. BSL adopting the SDF training pipeline (BSL-SDF).
6. BSSGAN.
The performance of each case is evaluated by appropri-

ate metrics, e.g., recall, confusion matrix, and F-� score,
which are covered in more details in the following subsection.
Beyond these, more intuitions are discussed in terms of (i) syn-
thetic image quality of ordinary GAN and BSS-GAN, and (ii)
effectiveness of unsupervised feature learning using different
amounts of unlabeled data in BSS-GAN.

4.2 Dataset
For generality, the images in this study were source from two
open-sourced structural image datasets: PEER Hub ImageNet
(�-Net) (Gao &Mosalam, 2020) and SDNET2018 (Dorafshan
et al., 2018). The structural images cover scenarios ranging
from undamaged to extreme cracking or spalling. The images
were further processed for the designed experiments:

1. Clean the dataset and select pixel-level (close up) images
with high visual quality.

2. Select and store the images with label UD, CR, and SP
to build the full dataset.

3. Rescale the images to 128×128 pixels with bicubic
resampling.
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(a) Undamaged (b) Cracked (c) Spalling

FIGURE 5 Sample images of three classes

Finally, a dataset with a total of 15,750 images was con-
structed including 14,400 UD, 900 CR, and 450 SP images
with a class ratio of 32:2:1, Table 1. In addition, a 2:1 training-
test split ratio was applied, so that enough test data (especially
minority-class data) were assigned for a more proper evalua-
tion. In experiment (1), UD and CR data were used, which has
a 16:1 class ratio. For experiment (2), UD and SP data were
used, which has a 32:1 class ratio. For experiment (3), all data
were used. In all, compared with the �-Net benchmark exper-
iments (Gao & Mosalam, 2020) and general CV applications,
the dataset used herein is considered imbalanced and low-data.
In addition, to investigate the contribution of unlabeled data

in BSS-GAN, a smaller-scale imbalanced dataset for concrete
crack detection was reformed, in which 20% of the labeled
training data (2,040) in the original crack detection were used,
and the remaining training data (8,160) were treated as unla-
beled. Both labeled and unlabeled data still remained at the
same 16:1 class ratio for UD:CR.

TABLE 1 Label statistics of the experimental dataset
Label UD CR SP Class ratio
Training 9,600 600 300 32:2:1
Test 4,800 300 150 32:2:1
Total 14,400 900 450 32:2:1

4.3 Evaluation metrics
Classification accuracy (aka. overall accuracy) is defined by
the number of correct predictions divided by the total number
of predictionsmade for a dataset. However, it is not an informa-
tive measure for imbalanced classification problems. Because
simply guessing all samples as from the majority class yields
a misleadingly high accuracy. Thus, in this study, some more
appropriate metrics are introduced and used.

4.3.1 Confusion matrix
For classification, confusion matrix (CM) is a useful tool to
summarize the model performance. For a binary classification
problem, the CM has four possible outcomes: true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN). If further normalizing the CM entries by the number of
predictions of each class, its diagonal entries become the true
positive rate (TPR), Equation 13, and the true negative rate
(TNR), Equation 14, which are used for evaluating the accu-
racy of detecting positive and negative classes respectively.
Additionally, recall, Equation 13, and precision, Equation

15, are also commonly used metrics. It is noted that in the
binary case, recall is usually defined by the accuracy of cor-
rectly predicting the positive class, which is equivalent to
TPR.

TPR(Recall) = TP
TP + FN

(13)

TNR = TN
TN + FP

(14)

Precision = TP
TP + FP

(15)
Recall/TPR and precision measure different aspects of a

model’s performance. Recall is more appropriate if minimiz-
ing FN is the focus, and precision is more appropriate if min-
imizing FP is more important (Chawla, Japkowicz, & Kotcz,
2004). In damage detection, damaged state is usually defined as
positive, and undamaged state is negative, and thus the number
of negative data far exceeds the number of positive ones.
Failing to detect damages (more FN) bears more severe

consequences than wrongly recognize undamaged samples as
damaged (more FP). Thus, the first focus of the trained model
should be to minimize the FN, measured by recall/TPR. On
the other hand, precision is not an appropriate metric because
due to the large number of negative (undamaged) data, a small
drop in TNR will cause a large increase in FP, which over-
whelms the TP and leads to amisleadingly low precision value.
Furthermore, TNR can be an alternative to recall/TPR, which
takes FP into account and measures the accuracy of correctly
detecting negative class.
In addition, the normalized CM can also be applied to multi-

class problems, i.e., K > 2, for which the recall for each class
is evaluated and placed on the diagonal cells.

4.3.2 F-� score
Besides CM, the F-� score is another suitable metric for imbal-
anced binary classification problems (Chawla et al., 2004).
Instead of completely ignoring the precision, F-� weights and
combines both precision and recall scores into a single mea-
surement, Equation 16. Based on different � values, the � value
measures different importance of recall over precision. When
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� = 1, both recall and precision are weighted equally (F-1
score).
The � factor has some real-world interpretations (Chawla

et al., 2004), e.g., how much higher the financial cost will be
if failing to detect a damage than misproducing a false alarm.
According to (Chawla et al., 2004), � = 2 is a common value
(F−2 score). However, in SHM applications, the low tolerance
of missing a damage calls for a much higher �. In this study,
we consider � = 2 and � = 5, along with other � values in
between.

Fβ = (1 + �2) ⋅
Precision ⋅ Recall

(�2 ⋅ Precision) + Recall
(16)

4.4 Network configurations
In many previous studies, the network design is sophisticated
and task/dataset dependent. In order not to lose generality
(while also keeping in mind the potential computing power
limitations during field applications), BSL is built with a gen-
eral multi-layer CNN discriminative classifier without a too
elaborated network design and hyper-parameter tuning, refer
to Table 2. For a fair comparison, the BSS-GAN’s discrimina-
tor uses the same architecture as the BSL, e.g., same numbers
of layers and filters, except for the output dimension (K + 1 in
BSS-GAN as opposed to K in the BSL). According to (Rad-
ford et al., 2015), Leaky ReLU (Maas, Hannun, & Ng, 2013)
is used as the activation function with a negative slope coef-
ficient � = 0.2, and batch normalization (BatchNorm) (Ioffe
& Szegedy, 2015) layers are inserted after the intermediate
Conv layers with momentum 0.8. To avoid over-fitting, a 0.25
dropout rate is also applied.
The generator of the BSS-GAN is configured based on pre-

vious studies (Gao et al., 2019; Radford et al., 2015), Table
3. Due to the small image size (128×128), a conventional
100-dimensional noise vector is randomly generated from the
Gaussian distribution as the input to the generator. There is
no dropout in the generator, but BatchNorm layers with a
0.8 momentum are added after the deconvolutional (Deconv)
layers except for the last one.
For the other two GAN-based pipelines (BOS-GAN and

BSL-SDF), the GAN portions stay consistent with that of the
BSS-GAN except for the loss functions, which are the loss
functions used in the original GAN (I. Goodfellow et al., 2014).

4.5 Experimental setups
In the first three experiments, all data were labeled. For the first
five models, a batch size of 60 was used. For the BSS-GAN,
the number of labeled real data was maintained at 60, for the
remaining batch data, based on balanced-batch sampling, the
numbers varied by cases. For binary cases, the total batch size

of the BSS-GAN is m = 60+60∕2 = 90. For three-class case,
m = 60 + 60∕3 = 80. In the last experiment investigating
the usage of the unlabeled data, the batch size for binary crack
detection is m = 60 + 60∕2 × 2 = 120.
All six pipelines were trained for 300 epochs, and saved for

each epoch. In experiments 1, 2, and 4, the best model was
selected by the highest TPRwith over 90% TNR. For the three-
class task of experiment 3, the best model was selected by the
highest recall of SP with over 90% recall of UD. The optimizer
was Adam (Kingma&Ba, 2014) with an initial learning rate of
2 × 10−5. All experiments were conducted on the TensorFlow
platform and performed on CyberpowerPC with single GPU
(CPU: Intel Core i7-8700K@3.7GHz 6 Core, RAM:32GB &
GPU: Nvidia Geforce RTX 2080Ti).

5 EXPERIMENTAL RESULTS &
ANALYSIS

5.1 Experiment 1: Crack detection
From Table 4, the accuracy values for all six pipelines are
higher than 90%, which are deceivingly promising. However,
simply predicting all images as UD can easily lead to a 94.1
% overall accuracy under the 16:1 class ratio. More focuses
should be placed on the TPR and TNR, which represent the
accuracy of detecting CR and UD respectively. The resulting
TPR and TNR are shown in Table 4 and Figure 6.
Starting from the low TPR of the BSL, it can be inferred that

a shallow DL model can easily become biased due to extreme
class imbalance (16:1). The BUS’s under-sampling worked to
some degree, as it improved the TPR from 31% to 46% with-
out compromising the TNR too much. Similarly, BOS-DA’s
over-sampling helped increase the TPR to 45.7% without too
much drop in the TNR, yet its TPR (along with that of the
BUS) is unsatisfactory. BOS-GAN had the worst TPR (lower
than the BSL), which conforms with the observations in (Gao
et al., 2019) of the low performance of directly mixing syn-
thetic data to the pipeline. BOS-GAN is extremely biased,
and it is more prone to mis-predicting data as UD, causing a
meaninglessly high TNR. Three factors lead to this poor and
biased behavior: (1) the risk of introducing extra parameters
mentioned in Section 3.2, (2) manually selecting augmented
images is subjective, and (3) some GAN-generated images
may be “adversarial” images (I. J. Goodfellow, Shlens, &
Szegedy, 2014). For (3), although the GAN-generated images
might be realistic-looking to human eyes, small feature per-
turbations undetectable by humans within these images might
cause the classifier to make false predictions. Lastly, for the
SDF pipeline, it obtained a similar performance to BUS and
BOS-DA with a slight sacrifice in TNR to make up for the 3%
enhancement in TPR. SDF is still biased, for which we can
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TABLE 2 Configurations of the discriminator of the BSS-GAN
Layer Filter size (#) Activation Shape Notes (�: −ive slope coef. in Leaky ReLU)
Input - - (N , 128, 128, 3) Input RGB images of size 128×128
Conv 3×3 (32) Leaky ReLU (N , 64, 64, 32) Stride = 2, � = 0.2

Dropout - - (N , 64, 64, 32) Dropout rate = 0.25
Conv 3×3 (64) Leaky ReLU (N , 32, 32, 64) Stride = 2, � = 0.2

BatchNorm - - (N , 32, 32, 64) Momentum = 0.8
Dropout - - (N , 32, 32, 64) Dropout rate = 0.25
Conv 3×3 (64) Leaky ReLU (N , 32, 32, 64) Stride = 1, � = 0.2
Flatten - - (N , 65,536) 65,536 = 32×32×64
Fc-layer - Softmax (N , K) BSS-GAN: K = 2 + 1; BSL: K = 2

TABLE 3 Configuration of the generator of the BSS-GAN
Layer Filter size (#) Activation Shape Notes
Input - - (N , 100) Noise generated from Normal distribution

Fc-layer - ReLU (N , 131,072) 131,072 = 32×32×128
Reshape - - (N , 32, 32, 128) -
Deconv 3×3 (128) ReLU (N , 64, 64, 64) Stride = 2

BatchNorm - - (N , 64, 64, 64) Momentum = 0.8
Deconv 3×3 (64) ReLU (N , 128, 128, 3) Stride = 2

BatchNorm - - (N , 128, 128, 3) Momentum = 0.8
Deconv 3×3 (3) tanh (N , 128, 128, 3) Stride = 1

infer that even though SDF improved model initialization, it
did not help with solving the class imbalance issue.
In general, the five pipelines above are unsatisfactory in

crack detection under the 16:1 (UD:CR) class ratio. All five
pipelines have TPR below 50% and misleadingly high TNRs,
implying severe biases towards the “undamaged" (UD) class.
In other words, these pipelines can only detect less than 50%
of all cracked structures or components, which is unacceptable
in practice. On the contrary, the BSS-GAN model not only
maintained an equally good TNR (over 90%) as others, but its
TPR was also substantially higher (reaching 90%), indicating
a nearly unbiased performance. Moreover, BSS-GAN is effi-
cient in training, and it has an edge over other models in the
following sense: compared with BUS, BSS-GAN can utilize
all accessible data, which provide additional information; com-
pared with BOS-DA, BOS-GAN, and SDF, the DA process is
hidden and involved in the training process, with no extra data
storage or multi-step training required.
F-2 & F-5 scores were then computed to take the recall

(TPR) and precision into account. As aforementioned, the
selection of � usually depends on its real-world interpretation.
To avoid losing generality, F-� scores with varying � values
are plotted in Figure 7. It is observed that starting from � = 1
(weighting recall and precision equally), BSS-GAN and SDF
have increasing trends while BSL, BOS-DA, and BOS-GAN

TABLE 4 Classification performance in crack detection (%)
Pipeline TPR TNR F-2 F-5 Accuracy
BSL 31.0 99.4 35.2 31.7 95.4
BUS 46.0 97.0 46.6 46.1 94.0

BOS-DA 45.7 99.4 50.1 46.5 96.2
BOS-GAN 29.3 99.5 33.6 30.1 95.4

SDF 49.0 92.8 43.4 47.8 90.2
BSS-GAN 89.3 92.2 72.8 85.6 92.1

show decreasing trends. In addition, the F −� values converge
to recall scores (TPR) as � grows larger.
In SHM, it is more crucial to reduce FN than FP, so a large �

is preferred. From Figure 7, as � becomes larger, BSS-GAN’s
F − � exceeds those of other models with growing differ-
ences, suggesting its superiority in crack detection problems
with high class imbalance.

5.2 Experiment 2: Spalling detection
Even though the imbalanced class ratio (32:1 for UD:SP) in
this experiment is twice higher than that of the crack detection
task, from Table 5 and Figure 8, performance of all pipelines
are better than the previous experiment. This observation can
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(a) BSL (b) BUS

(c) BOS-DA (d) BOS-GAN

(e) SDF (f) BSS-GAN

FIGURE 6 Normalized CM in crack detection

be partially explained by different degrees of visual pattern
similarity among UD, CR and SP. CR images (Figure 5b) are
similar to UD images (Figure 5a) except for the appearance
of surface fissures or fine cracks. On the contrary, SP images
(Figure 5c) are more dissimilar, where the areas of spalling
break the surface patterns in both color and texture, making
the SP features more distinguishable. In this experiment, all
pipelines obtained satisfactory TNR, and over 50% TPR val-
ues. As in the last experiment, BSL and BOS-GAN had the
lowest TPR, which again showed the ineffectiveness of directly
mixing synthetic data to the pipeline. BUS, BOS-DA, and
SDF achieved similar performance, with TPR values reaching
nearly 84%. BSS-GAN achieved the highest TPR (consistent
with its crack detection performance). It not only maintained a
high TNR (95.8%) as with other pipelines, but also improved
the TPR from BSL’s 62.0% to a surprising 98.0%, which is

FIGURE 7 F� with varying � in crack detection

TABLE 5 Classification performance in spalling detection
(%)

Pipeline TPR TNR F-2 F-5 Accuracy
BSL 62.0 99.8 66.1 62.8 98.6
BUS 84.7 97.1 73.2 82.2 96.7

BOS-DA 83.3 99.9 85.5 83.7 99.4
BOS-GAN 64.0 99.9 68.6 64.8 99.0

SDF 84.0 92.8 62.3 78.7 93.8
BSS-GAN 98.0 95.8 77.6 93.3 95.9

nearly 14% higher than those of BUS, BOS-DA, and SDF. The
BSS-GAN outperformed the other five pipeline once more.
In spalling detection, due to high class imbalance, a small

decrease in TNR will over-emphasize the increase of FP, lead-
ing to a higher F-2 score. For example, a mere 4.1% drop
in TNR from BOS-DA to BSS-GAN makes BOS-DA have a
higher F-2 score, although its TPR is 15% lower than that of
BSS-GAN. Under the 32:1 (UD:SP) ratio, the F-2 score does
not place enough emphasis on the recall (TPR), so a larger �,
i.e., � = 5, is more informative and reasonable. According to
Figure 9, both BSL and BOS-GAN share similar values and
trends, while BUS, BOS-DA, and SDF have similar conver-
gences after � = 5. Again, as � increases, especially beyond
� = 5, BSS-GAN outperforms other pipeline significantly.

5.3 Experiment 3: Damage pattern
recognition
In this experiment, a more complex multi-class classification
was investigated, where the imbalanced ratio for UD:CR:SP
is 32:2:1. The performance results are listed in Table 6 and
Figure 10. As with the two binary cases above, the BSL was
biased in favor of UD with low recall values (around 30%) for
both minority classes CR & SP. BOS-GAN was the second
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(a) BSL (b) BUS

(c) BOS-DA (d) BOS-GAN

(e) SDF (f) BSS-GAN

FIGURE 8 Normalized CM in spalling detection

worst pipeline in terms of class recall (31.3% and 60.7% for CR
and SP respectively). BUS, BOS-DA and SDF did not perform
well either, as their improvements in SP recall were merely
sacrifices of the CR recall. For example, BOS-DA’s SP recall
reached 90%, but its CR recall remained low at 29%.
In general, the first five pipelines share a common drawback,

that is the bias against CR, as characterized by their low CR
recall values. This issue is attributed to the high visual similar-
ity between UD and CR. GAN-based DAworsens this issue by
generating images with blended features between UD and CR.
On the contrary, the BSS-GAN pipeline outperformed oth-

ers with 90% UD recall, 70% CR recall, and 94% SP recall.
Additionally, the BSS-GAN only misclassified 6% of the SP
images as CR, and no SP images were misidentified as UD. It
is thus much more reliable in detecting severer damages.

FIGURE 9 F� with varying � in spalling detection

TABLE 6 Classification performance in damage pattern
recognition (%)

Pipeline Accuracy Recall
UD CR SP

BSL 93.6 99.5 28.7 32.0
BUS 91.7 95.4 42.6 69.3

BOS-DA 95.2 99.5 29.0 90.0
BOS-GAN 88.3 92.7 31.3 60.7

SDF 89.6 93.5 35.0 73.3
BSS-GAN 89.7 90.9 70.0 94.0

5.4 Investigation on synthetic image quality
In this section, synthetic images generated from well-trained
BSS-GAN models in the above experiments were compared
with those generated by ordinary GAN in BOS-GAN and SDF
pipelines, Figures 11, 12 & 13. It is noted that the generator in
the BSS-GAN was trained using mixed-class images instead
of class-specific (minority class) as in BOS-GAN and SDF, so
it learned a mixed distribution of UD, CR & SP. For example,
for crack detection, BSS-GAN was capable to generate both
synthetic UD and CR images, Figure 11b.
Overall, there is no obvious mode collapse issue (the gen-

erator only produces limited varieties of images) in either the
ordinary GAN or BSS-GAN. Besides basic visual features like
textures and colors, the generator in both models can generate
images with a variety of more complex features, e.g., crack ori-
entation, location and width, and spalling shape, location, and
area. Asmentioned in (Gao et al., 2019), structural images have
complex and mixed distributions, which makes it difficult for
GAN to generate clear and class-discriminative images. How-
ever, conditioning operation (considering class information
related to a specific class of images) makes the ordinary GAN
capable of generating higher quality images towards that class.
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(a) BSL (b) BUS

(c) BOS-DA (d) BOS-GAN

(e) SDF (f) BSS-GAN

FIGURE 10 Normalized CM in damage pattern recognition

For example, when training the GANs of BOS-GAN and SDF
pipelines for crack detection, only feeding minority-class (CR)
images can be viewed as one type of conditioning operation,
which significantly reduces the data distribution complexity.
Thus, in Figure 11a, the synthetic images show very realistic
visual qualities. On the contrary, the generator in the BSS-
GAN was trained with all images in an unsupervised manner.
Thus, it had to learn a mixed distribution from both UD and
CR. As a result, the synthetic images generated by BSS-GAN
have features of UD, CR, or even the intermediate (mixed)
state. To show this, in Figure 11b, synthetic images in the first
row are smooth and resemble UD, while the remaining images
resemble CR, but are somewhat blurry.
In addition, another possible explanation of the differences

in image quality is the loss function. Unlike ordinary GAN, the
loss function in BSS-GAN focuses more on classification than

(a) Ordinary GAN (b) BSS-GAN

FIGURE 11 Sample synthetic images in crack detection

(a) Ordinary GAN (b) BSS-GAN

FIGURE 12 Sample synthetic images in spalling detection

the quality of generated images. This is reflected by the super-
vised cross-entropy loss (Equation 3). On the contrary, the
ordinary GAN only utilizes the unsupervised loss (Equation
2), which is more about feature learning than classification.
These different training objectives influence the performance
of the generator even though the same network architecture
was used. It is thus inferred that BSS-GAN trades off its gener-
ator performance for more improvement in the discriminator’s
classification capabilities.
In summary, the ordinary GAN with class conditioning

is able to generate higher-quality images than BSS-GAN by
human judgement under 128×128 pixel resolution. However,
according to the experimental results, the BSS-GAN was still
able to learn meaningful representations from the generated
images and improve its classifier performance. For BSS-GAN,
the steps from synthetic image generation to feature learning
and classification, are automatically and implicitly embedded
in the training process, which is characterized by the game-
theoretic competition between D & G. No human interaction
is required (such as manual image selection as in BOS-GAN
and SDF). These characteristics improve both training effi-
ciency and the discriminative performance, which are essential
enhancements for SHM decision making process under prac-
tical conditions of data deficiency and class-imbalance.
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FIGURE 13 Sample synthetic images in damage pattern
recognition generated by BSS-GAN

5.5 Investigation on unsupervised feature
learning
In this part, both BSL and BSS-GAN were initially trained
using only 2040 labeled samples (20% of the total data). More
unlabeled data were progressively added to subsequent BSS-
GAN trials (50% and 100% of the remaining 8,160 samples).
Results of the four cases are shown in Table 7 and Figure 14.
According to the results, initially given 20% of all data with

imbalanced classes, BSLwas biasedwith a TPR of only 29.0%.
Although the TPR of BSS-GAN dropped to 60.7% compared
to using full labeled dataset, it was still far less biased than
BSL. BSL cannot improve beyond this point, as it can only
learn from labeled data. However, as we introduced more unla-
beled data to BSS-GAN (refer to Figures 14c & 14d), the TPR
of BSS-GAN improved by 4% and 11% respectively by sup-
plementing 50% and 100% of the unlabeled data. Although
the supplementary data do not provide any label information,
under the semi-supervised learning setting, BSS-GAN can still
utilize information from the unlabeled samples. During the
balanced batch sampling, the number of unlabeled data fed
to each batch stays consistent with that of a single-class sub-
batch, i.e., nul = nl∕K . As a result, even asmore unlabeled data
are introduced, they will never overwhelm the labeled sam-
ples during batch-by-batch training. Therefore, unlabeled data,
once handled appropriately in each training batch, are able
to supplement the learnt features and improve the classifier’s
performance, Figure 14d.
One seeming caveat is the decreasing TNR of BSS-GAN as

more unlabeled data are supplemented. However, the upward
trend of the F-5 score suggests that BSS-GAN models trained
with more unlabeled data are better, which is based on our
interest where high recall is prioritized over precision.
This experiment shows once more that the overall accuracy

is a deceptive measure: the BSL achieved a 95.1% accuracy
compared with BSS-GAN’s 91.6% (with 8160 unlabeled sam-
ples), yet the BSL’s performance is the worst overall in terms
of TPR and F-5 score.

(a) BSL (b) BSS-GAN

(c) BSS-GAN using additional 50%
unlabeled data

(d) BSS-GAN using additional 100%
unlabeled data

FIGURE 14 Normalized CM of four cases under a reduced-
scale dataset with additional unlabeled data

TABLE 7 Classification performance in the study of unla-
beled data utilization (%)

Pipeline Unlabeled data TPR TNR F-5 Accuracy
BSL - 29.0 99.2 29.7 95.1

BSS-GAN - 60.7 95.0 59.7 93.0
BSS-GAN 4,080 65.0 93.2 63.2 91.5
BSS-GAN 8,160 72.3 92.8 70.0 91.6

6 CONCLUSIONS & EXTENSIONS

In this study, we firstly pointed out three key issues that impede
the real-world applications of DL in vision-based structural
damage assessment, namely data deficiency, class imbalance,
and limited computing power. To address these issues, BSS-
GAN, a semi-supervised learning GAN pipeline with balanced
batch sampling, was proposed. It is an alternative to conven-
tional or GAN-based data augmentation methods. To verify
the effectiveness and efficiency of BSS-GAN in classifica-
tion tasks, a series of computer experiments related to crack
and spalling detection of reinforced concrete were designed
and conducted under low-data and imbalanced-class regime.
In addition, computing power limitations were simulated via
using a shallow and generic CNN as the base design for all
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pipelines. The experimental results were analyzed and com-
pared with other five pipelines based on multiple metrics, i.e.,
recall (TPR) and F-� scores (F-2 & F-5). The synthetic image
generation capabilities were then compared between BSS-
GAN and the ordinary GAN. Lastly, the effectiveness of sup-
plementing unlabeled data for feature learning in BSS-GAN
was investigated.
The following key conclusions are drawn from the experi-

ments:
• In general, BSS-GAN outperformed others in both

binary crack and spalling detection under low-data
and imbalanced-class settings. It achieved a significant
improvement in TPR by reducing FN with only a slight
decrease of TNR. BSS-GAN achieved better F-� scores,
which put more weights on recall (TPR) over precision,
e.g., F-5.

• Over-sampling the minority class by GAN-generated
images (BOS-GAN) did not work well, and it led to
worse performances than the baseline in spalling detec-
tion tasks. This was caused by three factors: (1) introduc-
tion of extra parameters, (2) subjective manual synthetic
image selection, and (3) generation of “adversarial”
images. These factors caused unstable training behav-
iors and exacerbated BOS-GAN’s bias in favor of the
majority class (UD). Such observations correlate to the
findings in (Gao et al., 2019).

• BUS, BOS-DA, and SDF had similar but limited
improvements over BSL, which were not satisfactory in
practice. Their flaws include: in BUS, under-sampling
eliminated a large portion of the labeled majority-class
data, causing information loss; in BOS-DA, the conven-
tional DA failed to increase feature varieties; in SDF, the
model did not sufficiently address the imbalanced-class
issue although it improved parameter initialization.

• In three-class classification, all pipelines except BSS-
GAN were prone to predicting CR as UD (thus having
low CR recalls). On the contrary, BSS-GAN obtained
a promising CR recall of about 70%, while maintain-
ing a high SP recall of 94% and a acceptable UD recall
of 91%.Thus, it further indicates the stable and great
potentials of the BSS-GAN in imbalanced multi-class
tasks.

• BSS-GAN generated images of all classes without mode
collapse, because it learned from a mixed-class distribu-
tion with balanced batch sampling. If only concerning
generated image quality by human visual judgement,
the generator in the ordinary GAN used in BOS-GAN
and SDF was slightly better. It was inferred that the

improvement of BSS-GAN’s discriminator weakened its
generator, but the generator was able to generate images
realistic enough for the classifier to learn new features
from.

• When labeled data have limited availability, the semi-
supervised setting of the BSS-GAN allows it to utilize
unlabeled data. With a proper ratio of unlabeled data
placed into each training batch, BSS-GAN was able to
capturemeaningful information from the unlabeled data.

However, as the exploratory study, several aspects need to
be investigated further:

• Even though pursuing a high precision is not so mean-
ingful in extreme imbalanced-class problems, reducing
FP is still desired, in order to lower the costs of false
alarms. From experimental results, there exists much
room of FP reduction for BSS-GAN.

• Our experiments have only shown that BSS-GAN is
effective under the low-data regime. More experiments
need to be conducted with medium-data and large-data
regimes to explore its effective application scope.

• Only one general-purpose CNN architecture was tested
in our experiments. More parametric studies with
respect to network architectures are needed.

• Besides classification, damage localization and segmen-
tation also face the issues of data deficiency and class
imbalance. This suggests many other possible usage
scenarios of BSS-GAN.

In conclusion, BSS-GAN is able to achieve state-of-the-art
classification performance over conventional pipelines in all
designed experiments under three major challenges: low data,
imbalanced classes, and limited computing power. The promis-
ing results shed light on the great potential of semi-supervised
GAN in vision-based damage assessment and SHM. This is
clearly worth significant research efforts in the future.
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