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Abstract: This study aims to build a deep generative model
for simulated quantum annealing. We train a Genera-
tive Adversarial Network (GAN) variant with mutual in-
formation maximization objectives to capture the distribu-
tion of spin configurations of a (2+1)-dimensional trans-
verse field quantum Ising model. The training samples are
obtained from quantum (path-integral) Monte Carlo simu-
lations at continuous transverse field values. To stabilize
training and prevent generator mode collapse, we use the 1-
Lipschitz constrained discriminator (critic) to approximate
the Kantorovich-Rubenstein dual form Wasserstein metric in
order to minimize the optimal transport distance between the
real and generated spin distributions during training. Addi-
tionally, we maximize the lower bound on mutual information
(MI) between the input conditional field value and the gen-
erated spin states to guide the generator to output realistic
spin configurations conditioned on the transverse field. We
implement and compare three objective functions for maxi-
mizing the lower bound of MI, based on: i. variational lower
bound through Difference of Entropies (DoE); ii. Noise-
contrastive Estimation (NCE); iii. Wasserstein dependency
measure (WDM) and Wasserstein Predictive Coding (WPC).

To the best of our knowledge, this work is the first to inves-
tigate GAN’s learning capabilities on a (2+1)-dimensional
transverse field quantum Ising model, in an effort to achieve
faster and more memory efficient simulated quantum an-
nealing. We tested and compared SQA-GAN’s genera-
tive capabilities based on a 32× 32 quantum Ising sys-
tem and conducted experiments to compare the perfor-
mance of different combinations of GAN objectives (Wasser-
stein vs non-Wasserstein) and MI lower bound maximiza-
tion formulations. This study not only proves the capabil-
ity of information-theoretic and game-theoretic deep learn-
ing methods in modeling complex quantum physical systems,
but also showcases the promising potential of GAN’s data
generation capabilities in simulating stochastic system.

1 Introduction

Replicating complex system behaviour has been an increas-
ing challenge in the data explosion era, in which Deep
Learning (DL) has shown great potential in learning and de-
scribing complicated physical systems in quantum physics
and astronomical sciences (LeCun et al. (2015),Baldi et al.
(2015),Chen et al. (2014)). Statistical physics combines
powerful statistics methods to describe and simulate many-
body physical systems such as in field theory or spin models.
Given a Hamiltonian or energy configuration, we want to de-
scribe the system behavior by tracking the distribution of el-
ementary degrees of freedom, which are variables (such as
spins in a spin model) that interact with each other according
to the Boltzmann distribution.

The Ising model is an example of statistical physics model
whose behavior is governed by the Hamiltonian. The classi-
cal Ising model, when combined with annealing algorithms,
has application value as it is a powerful optimization tool
that can solve hard combinatorial problems (such as travel-
ing sales problem, integer factoring, portfolio optimization,
and protein modeling, etc), while preventing being trapped
in local minima by probabilistic thermal fluctuations to jump
over energy barriers.

Quantum annealing is the quantum analogue of classical
annealing. Quantum annealing replaces thermodynamics in
classical annealing by quantum dynamics through introduc-
ing additional degrees of freedom of quantum nature (“trans-
verse field”). Instead of “thermal jumps” to escape local
minima, quantum annealing is able to find lower energy con-
figurations through quantum tunneling (Farhi et al. (2000),
Farhi et al. (2001), Farhi et al. (2002)), reaching lower en-
ergy states directly through energy barriers.

Both classical annealing (CA) and quantum annealing
(QA) can be simulated by Markov chain Monte Carlo
(MCMC) through the Metropolis-Hastings algorithm, which
guarantees asymptotic convergence to the true distribution.
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This conveniently bridges CA or QA with stochastic systems.
As the “temperature” or “transverse field” lowers, MCMC
generates Ising spin configurations closer to the ground state,
which represents the global minimum of the optimization
problem.

As the Ising model size increases, MCMC simulations
quickly become computationally heavy. We thus wish to take
advantage of the great potential of deep learning to capture
and describe the quantum annealing process. Specifically,
we are interested in training a model that outputs Ising states
congruent to the real distribution conditioned on the “tem-
perature” or “transverse field”.

Recent development in computer vision has revealed the
great potential of convolutional neural networks (CNNs),
which were successful in learning many body systems
(REF) and predicting phase transitions and predicting system
Hamiltonians under supervised learning frameworks.

Additionally, generative models were used to simulate nat-
ural and human behaviours through hidden Markov model,
variational autoencoders and reinforcement learning under
unsupervised learning frameworks. Generative Adversarial
Networks (GANs) learn the distribution of training data in a
zero-sum game-theoretical framework, allowing to construct
models to imitate realistic stochastic physical systems.

In this work, we build a GAN framework with mutual in-
formation (MI) lower bound maximization objectives to effi-
ciently train the model to output realistic Ising spins congru-
ent to the target label. We name our framework SQA-GAN
and the main contributions are:

i. To the best of our knowledge, this work is the
first to investigate GAN’s learning capabilities on a (2+1)-
dimensional transverse field quantum Ising model, in an ef-
fort to achieve faster and more memory efficient simulated
quantum annealing (SQA).

ii. We incorporated three families of Mutual Informa-
tion (MI) lower bound maximization methods: 1. varia-
tional lower bound through Difference of Entropies (DoE); 2.
Noise-contrastive Estimation (NCE) based methods includ-
ing NCE and infoNCE; 3. Wasserstein dependency measure
(WDM) and Wasserstein Predictive Coding (WPC). We con-
ducted comparison experiments to study the effect of each
MI lower bound maximization formulation in combination
with Wasserstein or non-Wasserstein GAN objectives.

iii. We give rigorous derivations to provide a unifying
view on various contrastive learning objectives for mutual
information (lower bound) maximization, by formulating
them as a cross entropy maximization problem between con-
trastive sample distribution (from joint distribution p(x,y)
and the product of marginals p(x)p(y)) and a likelihood
estimator function f (x,y). We discuss further research
directions involving distribution divergence measures and
how to further unify them through the information-theoretic
scope.

2 Related Work

Simulated Quantum Annealing The Ising model is of-
ten used to describe natural systems in physics, and many
optimization problems can be mapped into physical systems
described by the Ising model whose ground states provide
the solutions to the optimization problems. Examples in-
clude travel- ing salesman problem, portfolio optimization,
integer factoring, social economics network, protein folding,
protein modeling and statistical genetics. See Irback, Peter-
son and Potthast (1996), Majewski, Li and Ott (2001), Mc-
Geoch (2014) and Stauffer (2008). (add MCMC simulation
here)

Generative Adversarial Network The concept of Gen-
erative Adversarial Network (GAN) was first introduced
by Goodfellow et al. (2014), which is a generative, game-
theoretic model that synthesizes unseen data from the learned
distribution. GAN consists of two networks, namely the
generator and the discriminator, where the generator cre-
ates synthetic data and the discriminator classifies an input
sample as “real” or “synthetic.” GAN uses adversarial train-
ing, where each network aims to minimize the gain of the
opposite side while maximizing its own. Ideally, both the
generator and the discriminator converge to the Nash equi-
librium (Goodfellow, 2016), where the discriminator gives
equal predictive probabilities to real and synthesized sam-
ples. Until now, GAN has been applied to many computer vi-
sion (CV) tasks, e.g., fake image generation (Radford et al.,
2015), image-to-image translation (Isola et al., 2017), and
medical imaging synthesis, reconstruction, and classification
(Yi et al., 2019).

GAN in computational physics GAN’s data genera-
tion capabilities have been explored in computational and
statistical physics. Liu et al. (2017) used the conditional
GAN (CGAN) to simulate the classical (thermal) 2D Ising
model near critical temperature and verified its effective-
ness in generating realistic Ising states when trained on data
from conventional Monte Carlo (MC) simulations. Addition-
ally, Singh et al. (2020) used GAN and variational MI lower
bound method for sampling and detecting phase transition of
the classic XY model, and showed the model can be used
as an unsupervised indicator of transitions, by constructing
measures of the model’s susceptibility to changes in tuning
parameters.

Mutual Information Maximization Mutual Informa-
tion (MI) measures the amount of information obtained about
X ∼ p(x) by observing Y ∼ p(y). It is formally defined as the
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Kullback–Leibler (KL) divergence between the joint and the
product of the marginal distributions:

I(X ,Y ) = DKL(p(x,y)‖p(x)p(y)) = Ep(x,y)

[
log

p(x,y)
p(x)p(y)

]
.

(1)
However, in high-dimensional data, the exact value of
I(X ,Y ) is often intractable. Nguyen et al. (2010), Belghazi
et al. (2018), van den Oord et al. (2019), Poole et al. (2019),
and Gutmann and Hyvärinen (2010) have proposed maxi-
mizing tractable lower bounds to the MI which are applica-
ble in gradient-based deep learning settings. In this study,
we maximize the lower bound to the MI between the (real
or fake) spin configurations and corresponding input labels
(transverse field, Γ) in order to help the model capture spin
distributions conditioned on transverse fields. Specifically,
we implement and compare three families of MI maximiza-
tion formulations: i. variational lower bound through Dif-
ference of Entropies (DoE); ii. Noise-contrastive Estimation
(NCE); iii. Wasserstein dependency measure (WDM).

3 Background

3.1 Classical Ising Model

In statistical physics, the Ising model is described as an en-
semble of binary spins with coupling interactions in some
lattices. For A classic 2-dimensional lattice Ising model with
n rows and m columns, there are in total b = n ∗m sites. At
each lattice site, site variable si stands for a binary random
variable indicating the spin position (pointing up or down),
i.e., si ∈ {+1,−1},∀i= 1, ...,b. The Hamiltonian of the clas-
sical Ising model is given by

Hc
I (s) =− ∑

<i, j>
Ji jsis j−∑

j
h js j (2)

where Ji j stands for the coupling interaction between sites i
and j, and h j describes an external magnetic field on site j.
For a given configuration s, the energy of the Ising model is
equal to Hc

I(s).
The probability of a given configuration s at a given abso-

lute temperature T follows a Boltzmann (or Gibbs) distribu-
tion

Pβ (s|T) =
e−βHc

I(s)

Zβ

,Zβ = ∑
s

e−βHc
I (s),β = (kBT)−1, (3)

where β = (kBT )−1 is the inverse temperature, where kB is
the Boltzmann constant and T is a given absolute tempera-
ture. In this work, temperature refers to kBT which is the
fundamental temperature of the system with units of energy,
and β is simply its reciprocal.

3.2 Classical Annealing

A combinatorial optimization problem can be cleverly
mapped to an Ising model, whose ground state (a config-

uration that minimizes the energy function Hc
I (s) ) corre-

sponds the optimal objective. In a complex system where
exhaustively searching for the minimum is computationally
prohibitive, annealing approaches such as Simulated An-
nealing (SA) are used to probabilistically explore the search
space with repeated Markov Chain Monte Carlo (MCMC)
iterations. The Metropolis-Hastings algorithm is a popular
MCMC method that generates configuration samples (Ising
states) from the Boltzmann distribution at slowly-decreasing
temperatures.

Steps of the SA algorithm:
(1) Randomly and independently initializes the spins with

+1 and -1.
(2) At the kth sweep (one sweep is a complete update of

all spins), for spin i, attempt to flip its state, keeping other
spins unchanged. Calculated the energy change,4E(k)

i .
(3) The new state for spin i is accepted with probability

min{1,exp(−4E(k)
i /Tk)}

3.3 Quantum Ising Model

3.3.1 Quantum System Representation

Computers rely on physical systems to represent digits. Clas-
sical computers encode bits 0 and 1 by low and high volt-
ages. Analog to bits 0 and 1 in classic computation, quantum
computations rely on qubits |0〉 and |1〉. Quantum superposi-
tion allows qubits to encode ones and zeros simultaneously.
While a classical bit can only be either 0 or 1, a qubit can
be a superposition of both |0〉 and |1〉, which is realized by a
particle’s quantum spin where |0〉 and |1〉 correspond to the
up spin and down spin respectively. A superposition qubit
is ψ〉 = α0|0〉+α1|1〉, where α0 and α1 are two complex
numbers satisfying |α0|2 + |α1|2 = 1. Thus, a qubit can be
represented by a unit vector [α0,α1]

T in C2, and |0〉 and |1〉
are the orthonormal basis or the computational basis. Due to
the non-observability of qubits, we can only observe 0 with
probability |α0|2, or 1 with probability |α1|2.

The complex space increases exponentially with respect
to the number of qubits. In the case of a b-qubit sys-
tem, the computational basis takes the form |x1x2...xb〉,x j ∈
{+1,−1},∀ j ∈ {1, ...,b}, eg., when b= 2, the computational
basis are |00〉, |01〉, |10〉, and |11〉. A unit vector |ψ〉 =
[α00,α01,α10,α11]

T , with |α00|2 + |α01|2 + |α10|2 + |α11|2 =
1, |ψ〉 ∈ C22

, represents a specific superposition state of this
2-qubit system.

3.3.2 Quantum Annealing

As mentioned in Section 3.2.1, the quantum state of a b-qubit
quantum system is represented by a unit vector |ψ〉 ∈ C2b

.
The continuous time evolution of ψ(t)〉 is governed by the
famous Schrödinger Equation:

|ψ(t)〉= e−
√
−1Ht |ψ(0)〉, (4)
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where the quantum Hamiltonian, Ht ∈ C2b×2b
is a time-

dependent Hermitian matrix. The possible energies of the
quantum system corresponds to the eigenvalues of the quan-
tum Hamiltonian, and the ground state is the eigenvector cor-
responding to the smallest eignvalue.

To analogously represent a quantum Ising model using the
classical Ising model idea in Section 3.1, we replace each
lattice position varible si =±1 by a Pauli matrix

σ
z
j =

(
1 0
0 −1

)
. (5)

The quantum Hamiltonian of the quantum Ising model thus
becomes:

Hq
I =− ∑

<i, j>
Ji jσ

z
i σ

z
j −∑

j
h jσ

z
j , (6)

where Ji j is the Ising coupling of lattice positions i and j,
and h j is the local field on jth lattice position. It is worth
noting that σ

z
i σ

z
j denotes a tensor product, which makes the

first term in (6) a diagonal matrix. Hq
I is thus also a diagonal

matrix (the second term of (6) is diagonal).
The eigenvalues of Hq

I are its diagonal entries, which ac-
tually corresponds all the 2b possible values of a classical
Hamiltonian Hc

I (s) with b total spins (REF). Finding the
minimal energy of the quantum Hamiltonian is equivalent to
finding the minimal energy of the classical Hamiltonian.

However, unlike the classical Ising model, an additional
transverse magnetic field orthogonal to the Ising axis is intro-
duced to drive the transitions between the up and down states
of each spin, this added field turns the system behaviour from
classical to quantum (REF). The transverse magnetic field is
governed by a quantum Hamiltonian

Hx =−∑
j

σ
x
j , (7)

where σ x
j is a Pauli matrix in the x axis:

σ
x
j =

(
0 1
1 0

)
. (8)

During quantum annealing, the system evolves from
the initial Hamiltonian HX to the final target Hamiltonian
through annealing schedules A(t) and B(t), which is realized
by turning on a off magnetic fields adiabatically (as in the
D-wave quantum computer). (REF)

HD(t) = A(t)HX +B(t)Hq
I . (9)

According to the quantum adiabatic theorem, the system
tends to remain in ground states of the instantaneous Hamil-
tonian through quantum tunneling. Thus at the end of quan-
tum annealing, if the system is in a ground state of the final
Hamiltonian, an optimal solution is obtained by measuring
the system (REF):

3.3.3 Simulated Quantum Annealing

The quantum Hamiltonian’s size increases exponentially
with the number of qubits in the system. Simulating the
quantum state evolution requires to exponentiate such expo-
nentially large, time-dependent and non-commutable Hamil-
tonian matrices, which is prohibitive by classical comput-
ing. Simulated Quantum Annealing (Martonák, Santoro and
Tosatti (2002)) approximates the partition function for the
quantum annealing Hamiltonian through the path-integral
technique using the Trotter formula. Specifically, SQA maps
the transverse field quantum Ising model to a classical (2+1)-
dimensional anisotropic Ising model with Hamiltonian

Hc
aI(s) =−

τ

∑
l=1

[B(t) ∑
<i, j>

Ji jsils jl + J(t)∑
j

s jls j,l+1], (10)

where s jl =±1, τ ∈ Z, l is the index for an extra imaginary-
time dimension, and Ji j are the couplings between the spins
in the original 2-dimensional Ising model. Additionally, J(t)
is the coupling along the imaginary-time dimension:

J(t) =−τT
2

ln[tanh(
A(t)
τT

)], (11)

where A(t) and B(t) are the same annealing schedules in the
original quantum annealing formulation.

Due to the extra imaginary-time dimension, the MCMC
method should run the Metropolis-Hastings algorithm in two
directions: 1. the local update of b spins at a fixed imaginary-
time index, i.e., updating sl = {sil , i = 1, ...,b} with a fixed l,
where sl is called the lth Trotter slice. 2. the global update
of the same spin position in all Trotter slices, i.e., fix i and
update all sil for each l value.

The SQA Algorithm:
1. Initialize spins in all Trotter slice with +1 and −1 ran-

domly and independently. Burn-in simulations can be added.
2. Locally and globally update spins one by one for each trot-
ter slice. A complete update of all spins locally and globally
is one sweep.
At the time of the kth sweep (denoted by tk):

(i). Local Update: For each spin i in each Trotter slice l,
attempt to flip from its old state s(k−1)

il to the new state s(k)il =

−s(k−1)
il , keeping all other spins unchanged. The change of

energy is: (formulation subject to change)

4E(k)
1il =−B(tk)[

i−1

∑
j=1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il )

+
b

∑
j=i+1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il )]

− J(tk)[s
(k)
il s(k)i,l+1 + s(k)i,l−1s(k)il

− s(k−1)
il s(k−1)

i,l+1 − s(k−1)
i,l−1 s(k−1)

il ].

(12)

The local update accepts the new state s(k)il with probability

min{1,exp[−E(k)
1il /(τT )]}
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(ii). Global Update: Once the local update is done for all
spins in all Trotter slices, iterate though each spin position
i and attempt to flip states (for given i) {s(k−1)

il , l = 1, ...,τ}
to new states {s(k)il = −s(k−1)

il , l = 1, ...,τ}, keeping all other
spins unchanged. Calculate the change of energy as: (formu-
lation subject to change)

4E(k)
2i =−

τ

∑
l=1

B(tk)[
i−1

∑
j=1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il )

+
b

∑
j=i+1

Ji js
(k−1)
jl (s(k)il − s(k−1)

il )].

(13)

The global update accepts the new states {s(k)il , l = 1, ...,τ}
with probability min{1,exp[−4E(k)

2i /(τT )]}.
3. When all sweeps are complete, evaluate the origi-

nal classical Hamiltonian, use the first Trotter slice at the
last sweep and obtain s(k) = {s(k)i , i = 1, ...,b}, and evaluate
Hc

I (s(k)).

3.4 Generative Adversarial Network

GAN The original GAN consists of a minimax game
between the generator and the discriminator. Let x ∈ Rd

be a sample, then xr ∼ pdata is a sample from the the real
data distribution and xg ∼ pg is a generated sample from
the GAN-learned, synthetic data distribution. The generator
G with parameters θG is trained to synthesize samples that
mimic the real sample distribution, pdata, by mapping the
noise vector (latent variable), z∼ pz, to a synthesized sample
xg = G(z;θG), xg ∼ pg. The discriminator D with parameters
θD takes in a sample x ∈ Rd (either real or synthesized) and
outputs D(x;θD), which is the predictive probability that x
comes from pdata rather than pg.

During the training, G and D compete with each other ac-
cording to (the non-saturating GAN objective):

min
G

max
D

Ex∼Pdata(x) [log(D(x))]+Ez∼Pz(x) [log(1−D(G(z)))]

(14)
In Equation (14), the first term is the negated cross-entropy

between pdata(x) and D(x), whose value is positively associ-
ated with D’s ability of correctly predicting real samples as
from the real data distribution pdata(x); the second term is the
negated cross-entropy between pz(z) and 1−D(G(z)), where
1−D(G(z)) is D’s predictive probability that a synthesized
sample xg = G(z) is indeed considered as “synthetic,” i.e.,
xg ∼ pg. D aims to maximize its discriminative power char-
acterized by both terms, while the generator G tries to un-
dermine D’s performance by synthesizing realistic samples
to trick D (minimizing the second term).

Both D and G can be parametrized by deep neural net-
works or CNNs, and they are trained and optimized alterna-
tively according to Equation (14) until reaching the optima
or designated number of iterations.

Conditional GAN Conditional GAN (CGAN) was in-
troduced by Mirza et al in 2014 (REF). A piece of additional
information y (such as class labels, or data from different
modality) is fed into the generator and discriminator in or-
der to direct the data generation process (Figure ??). CGAN
aims to tackles two challenges: (i) the difficulty of training
GANs in cases of extremely large numbers of predicted out-
put categories. (ii) learning one-to-one mappings from input
to output, eg., learning different tags that could appropriately
be assigned to a given image.

The two-player minimax game objective function of
CGAN is:

min
G

max
D

Ex∼pr(x) [log(D(x,y))]+Ez∼pz [log(1−D(G(z,y),y))]

(15)

Wasserstein distance Unlike KL divergence, which is
sensitive to small differences in data (ref Oord MI) ? ?,
Wasserstein distance is a metric-aware divergence. The
Wasserstein distance measures the optimal transport between
two distributions. If denoting the real and generated data dis-
tributions (densities) as pr and pg, their optimal transport dis-
tance (1-Wasserstein) is:

W (pr, pg) = inf
γ∈∏(pr ,pg)

E(x,y)∼γ [||x− y||], (16)

where ∏(pr, pg) is the set of all joint distributions γ(x,y)
whose marginals evaluate to pr and pg respectively, i.e.,
pr(x) =

∫
Y γ(x,y)dy and pg(y) =

∫
X γ(x,y)dx. ||x− y|| de-

notes the distance (or cost) of transferring an infinitesimal
amount of density value from x∼ pr to y∼ pg.

The primal Wasserstein distance formulation in Eq.16 is
intractable in a gradient-based deep learning setting. The
Kantorovich-Rubinstein (Villani, 2008) dual form of the 1-
Wasserstein distance is:

W (pr, pg) = sup
|| f ||L≤1

Ex∼pr [ f (x)]−Ex∼pg [ f (x)], (17)

where we take the supremum over all 1-Lipschitz functions
f : X →R. f (·) can be represented by a neural network with
parameter θ such that fθ (·) is 1-Lipschitz, which can be up-
dated through gradient-based optimization.

The Wasserstein GAN (WGAN) Arjovsky et al. (2017))
uses Eq.17 as the minimax objective with the advantage of
preventing mode collapse and stabilizing training:

min
G

max
D:‖D‖≤1

Ex∼pr [D(x)]−Ez∼pz [D(G(z))], (18)

where the 1-Lipschitz constraint of the discriminator (or the
critic), D(·), is enforced by weight clipping (Arjovsky et al.
(2017)), gradient penalty (Gulrajani et al. (2017)), or spec-
tral normalization (Miyato et al. (2018)). The conditional
WGAN objective is thus:

min
G

max
D:‖D‖≤1

Ex∼pr [D(x,y)]−Ez∼pz [D(G(z,y),y)]. (19)
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3.5 Mutual Information maximization

Intuition Besides creating “fake” Ising configurations
consistent with the real Boltzmann distribution, the generator
is also required to output Ising states that are congruent with
the target conditional label in order to become a meaningful
Ising simulator. We achieve this through Mutual Informa-
tion (MI) maximization, which measures the amount of in-
formation obtained about X ∼ p(x) by observing Y ∼ p(y).
Given two different target labels (transverse fields), yc1 and
yc2, we want the generator to create Ising samples G(z1,yc1)

and G(z2,yc2) such that they each contain maximal informa-
tion about the corresponding yci. Besides increasing the en-
tropy between G(z1,yc1) and G(z2,yc2) (making them “dif-
ferent” from each other), we need to establish a correspon-
dence between Ising samples and the correct continuous la-
bels. We train the discriminator (encoder) on real samples
so that it correctly identifies congruent (matching) data-label
pairs from incongruent (unmatching) pairs. An optimally
trained discriminator extracts high-level representations from
the real Ising data x that best reflect information about the
correct transverse field y, which is equivalent to optimizing
the discriminator’s feature extraction mechanism to maxi-
mize the estimated (lower bound) mutual information be-
tween congruent data and labels (and, if applicable by for-
mulation, decrease the MI between incongruent data and la-
bels).

Such information learnt by the discriminator is passed to
the generator through gradient backpropagation, when we
also train the generator to output any fake sample G(z,yc)

that has the maximal estimated mutual information about yc

evaluated by the discriminator.

MI definition Mutual Information (MI) is formally de-
fined as the Kullback–Leibler (KL) divergence between the
joint and the product of the marginal distributions:

I(X ,Y ) = DKL(p(x,y)‖p(x)p(y)) = Ep(x,y)

[
log

p(x,y)
p(x)p(y)

]
.

(20)
MI is difficult to estimate in high dimensional spaces.
Nguyen et al. (2010), Belghazi et al. (2018), van den
Oord et al. (2019), Poole et al. (2019), and Gutmann and
Hyvärinen (2010) have proposed maximizing tractable lower
bounds to the MI which are applicable in gradient-based
deep learning settings. In this study, we maximize the lower
bound to the MI between the (real or fake) spin configura-
tions and corresponding input labels (transverse field, Γ) in
order to help the model capture spin distributions conditioned
on transverse fields. Specifically, we implement and compare
three families of MI maximization formulations: i. varia-
tional lower bound through Difference of Entropies (DoE);
ii. Noise-contrastive Estimation (NCE); iii. Wasserstein de-
pendency measure (WDM).

Variational lower bound with difference of entropies
The Variational Lower Bound method (Barber and Agakov
(2003)) stems from an equivalent expression or of MI terms
of the difference of entropies (DoE):

IDoE(X ,Y ) = H(Y )−H(Y |X) = IKL(X ,Y ), (21)

and by Gibb’s inequality,

H(Y ) =−∑
Y

p(y)log p(y)≤−∑
Y

p(y)logq(y),

(22)

H(Y |X) =−∑
Y,X

p(y,x)log p(y|x)≤−∑
Y,X

p(y,x)logq(y|x),

(23)

where q(y) and q(y|x) are any valid probability distribu-
tion estimators in their respective variable domains (q(y) ∈
[0,1],∀y ∈ Y and q(y|x) ∈ [0,1],∀x ∈ X ,∀y ∈ Y ), which are
minimized (ideally) to estimate the true prior p(y) and pos-
terior p(y|x):

H(Y ) = inf
qY
−∑

Y
p(y)logq(y) = inf

qY
H(pY ,qY ),

(24)

H(Y |X) = inf
qY |X
−∑

Y,X
p(y,x)logq(y|x) = inf

qY |X
H(pY X ,qY |X ).

(25)

Although IDoE(X ,Y ) = H(Y )−H(Y |X) = infqY H(pY ,qY )−
infqY |X H(pY X ,qY |X ) provides no guarantee of any bound to
MI, in application scenarios where H(Y ) is typically fixed,
we arrive at the following lower bound to MI:

IDoE(X ,Y ) = H(Y )− inf
qY |X

H(pY X ,qY |X )≥ H(Y )+LDoE(X ,Y ).

(26)

LDoE(X ,Y ) =−H(pY X ,qY |X ) = ∑
Y,X

p(y,x)logq(y|x) (27)

This bound (27) is named the variational lower bound on mu-
tual information (ref Barber) and this method is used in de-
riving the information-theoretic GAN (infoGAN) objective
by Chen et al. An auxiliary network is used to model the
estimator function q(y|x). We use similar configurations as
Chen et al. where the auxiliary network and the discrimina-
tor share most convolutional layers and there is one final fully
connected layer to output parameters for the conditional dis-
tribution q(y|x). In this study we use the factored Gaussian
for q(y|x), so Q outputs the corresponding mean and standard
deviation vectors.

Noise-contrastive estimation NCE (Gutmann and
Hyvärinen (2010)) has inspired a family of MI lower
bounding methods (ref infoNCE, Contrastive Distillation).
This family of methods independently sample data pairs
of two types: congruent (positive) pairs from the joint
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distribution (s+ = {(x+,y+)i ∼ p(x,y), i = 1, ...,M} ) as
well as incongruent (negative) pairs from the product of
marginals (s− = {(x−,y−) j ∼ p(x)p(y), j = 1, ...,N}).

The contrastive loss function is the cross entropy between
the independently sampled sets’ distribution p(s+,s−) =

p(s+)p(s−) and a tractable likelihood estimator function
q(·):

Lcontrast =
1
M
Ep(s+)p(s−)logq(s+,s−). (28)

By Gibb’s inequality, q(s+,s−) is maximized, it is equal to
the sample probability, i.e., q∗(s+,s−) = p(s+)p(s−), and it
can be proven that Ep(s+)p(s−)logq∗(s+,s−) is a lower bound
to I(X ,Y ) (See Appendix for proof):

sup
q

Lcontrast ≤ I(X ,Y ) (29)

We prove that the following equation (28) is indeed a
unifying representation of different NCE-based formulations
and that it is a lower bound to the mutual information be-
tween X and Y (See Appendix).

In the original NCE formulation, q(s+,s−) =

∏
M
i=1 f ((x+,y+)i)∏

N
j=1(1− f ((x−,y−) j)) where f (·) ∈ [0,1]

is the estimated Bernoulli parameter denoting the probability
that a pair (x,y)i is congruent (and thus 1− f ((x,y)i) is the
probability that the pair is incongruent):

LNCE =
1
M
Ep(s+)p(s−)log(

M

∏
i=1

f ((x+,y+)i)
N

∏
j=1

(1− f ((x−,y−) j)))

=
1
M
Ep(s+)

M

∑
i=1

log( f ((x+,y+)i)+

1
M
Ep(s−)

N

∑
j=1

log(1− f ((x−,y−) j)))

= Ep(x,y)log( f ((x,y))+
N
M
Ep(x)p(y)log(1− f ((x,y))))(30)

InfoNCE (van den Oord et al. (2019)), on the other hand,
models q(·) into a softmax expression and sets M=1 (only
one positive pair):

Lin f oNCE =
1
M
Ep(s+)p(s−)logq(s+,s−)

=
1
M
Ep(x+,y+)p(s−)log

exp( f ((x+,y+)))
exp( f ((x+,y+)))+∑

N
j=1 exp( f ((x−,y−) j))

=
1
M
Ep(x+,y+) f ((x+,y+))−

1
M
Ep(x+,y+)p(s−)log

[
exp( f ((x+,y+)))+

N

∑
j=1

exp( f ((x−,y−) j))

]
.

(31)

Wasserstein dependency measure (WDM) The WDM
(Ozair et al. (2019)) is the Wasserstein distance between the

joint distribution p(x,y) and the product of marginal distribu-
tions p(x)p(y). This is an alternative measure of “mutual in-
formation” (loosely defined) between two distributions based
on the optimal transport (Villani (2009)) other than the KL
divergence:

IWDM =W (p(x,y), p(x)p(y)) = sup
‖ f‖L≤1

LWDM

LWDM = Ep(x,y)[ f (x,y)]−Ep(x)p(y)[ f (x,y)],(32)

where (32) is the Kantorovich-Rubinstein dual form as in
Eq.(17). Eq.(32) can be seen as a “contrastive” (loosely
defined) formulation, as the function f (x,y) aims to maxi-
mize the difference of scores evaluated on congruent samples
(x,y)∼ p(x,y) and incongruent samples (x,y)∼ p(x)p(y).

Interestingly, Ozair et al introduced the Lipchitz-1 con-
straint in Eq(32) to Eq(61) in order to force the discriminator
to represent more aspects of the data rather than collapsing
on a few easily discernible sample differences. Their method
is named “Wasserstein Predictive Coding”:

IWPC = sup
‖ f‖L≤1

LWPC

LWPC = Ep(x+,y+) f ((x+,y+))−

Ep(x+,y+)p(s−)log

[
exp( f ((x+,y+)))+

N

∑
j=1

exp( f ((x−,y−) j))

]
.
(33)

We end this section by noting that the contrastive estimator
functions, i.e., f (x,y) in LNCE , Lin f oNCE , LWDM and LWPC

are modeled directly by the discriminator with convolution
layers, which we will cover in detail in Section 4.

4 Proposed Method

4.1 Ising Model of Interest

This study aims to incorporate mutual information maxi-
mization strategies covered in the previous section into the
GAN framework, which implicitly learns the distribution of
the quantum Ising states output at given transverse fields Γ,
which is controlled by the annealing schedule A(t). We fo-
cus on the the spin glasses example (REF Rieger and Young,
1996), whose transverse field Ising model is defined by the
Hamiltonian

H =−∑
〈i j〉

Ji jσ
z
i σ

z
j −Γ∑

i
σ

x
i , (34)

which is mapped to a (2+1)-dimensional anistropic Ising
model with SQA:

Hc
aI(s) =−

τ

∑
l=1

[ ∑
<i, j>

Ji jsils jl + J(t)∑
j

s jls j,l+1],

J(t) =−τT
2

ln[tanh(
A(t)
τT

)].

(35)

At each sweep k, the transverse field strength Γ is equal to
A(tk), and the SQA algorithm outputs an Ising ”cube” of size
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n by n by τ , where n is the number of rows or columns in a
Trotter slice and τ is the total number of Trotter slice. The
total number of spins in each Trotter slice is thus b = n2.
We herein represent each of such simulated Ising ”cubes”
as x, corresponding to the real data samples for GAN, i.e.,
x∼ Pdata(x).

The Ising cubes output by the SQA model is analogous
to the image data for computer vision (CV). The numbers
of rows and columns correspond to the image height and
width, and the number of Trotter slices is the number of ”im-
age” channels. Therefore, a Convolutional Neural Network
(CNN) can be readily applied to the input data, which ex-
tracts the high-level features of each Ising cube and forms a
feature map subsequently learnt by a neural network. Such
CNN is the basic form of the GAN discriminator (REF?).

4.2 Architectures

Conditional generator The GAN generator uses a
dense layer and multiple transposed convolution layers to
map the input noise vector z ∼ pz to a synthetic data sample
xg = G(z;θG). The input z vector first goes through a dense
layer, whose output is reshaped to a 3-dimensional (width,
height, channel) feature map f m1(z). Then, multiple trans-
posed convolution layers transform f m1(z) into a synthetic
sample G(z).

We supply additional information about the target trans-
verse field strength Γ to the generator to direct its data gener-
ation process. The generator transforms the input Γ value by
feeding it to a single dense layer with enough neurons so that
its output can be reshaped to the same dimensions as f m1(z)
(call it f my(Γ)). Finally, the concatenated feature map, i.e.,
f m1(z)

⊕
f my(Γ), is then fed through the subsequent decon-

volutional layers to generate the conditional synthetic sample
G(z,Γ). (Figure 1)

Discriminator for contrastive learning NCE, in-
foNCE, WDM, and WPC formulations share structural simi-
larities (contrastive learning). Besides telling apart real con-
gruent data-label pairs (x,y∼ preal(x,y)) from synthetic con-
gruent data-label pairs (x̃,yc ∼ p(G(z,yc),yc)), the discrim-
inator’s output D(x,y) is also useful for contrasting incon-
gruent pairs from congruent pairs within the real or syn-
thetic sample groups. Specifically, we use the discrimina-
tor output, D(x,y) to directly model the estimator function
f (x,y) in NCE, infoNCE, WDM, and WPC formulations
for contrasting congruent samples from the joint distribu-
tion (x,y∼ pdata(x,y) for real data, and x,y∼ p(G(z,yc),yc)

for synthetic data) with incongruent samples from the prod-
uct of marginals (x,y ∼ pdata(x)pdata(y) for real data, and
x,y ∼ p(G(z,yc)) p(yc) for synthetic data). We show that
using D(x,y) for both the conditional GAN and contrastive
learning objectives does not compromise the training with

regard to either objective.
An given input Ising state (either real x ∼ p(x|y), or gen-

erated x̃ = G(z,yc)) first goes through a series of convolution
layers, and the penultimate convolution layer output is con-
catenated with the congruent label value y or yc and is then
input to the final convolution layer. The final convolution
layer’s output is reshaped and fed to a fully connected layer
(Table 2) which outputs the final value D(x,y). Please refer
to Figure (1) for illustrations of the contrastive GAN archi-
tecture.

Discriminator-auxiliary network for DoE On top of
the single-output discriminator architecture explained above
(only used for conditional GAN objectives in the case of
DoE), the DoE formulation (26) requires an auxiliary net-
work that models q(y|x) as in (26), which is replicated be-
low:

LDoE(X ,Y ) = H(Y )−H(pY X ,qY |X )

= H(Y )+∑
Y,X

p(y,x)q(y|x), (36)

where H(Y ) is treated as a constant. We follow the a similar
implementation of infoGAN (Chen et al.) where the aux-
iliary network (Dq) shares most convolution layers (except
the last one) with the discriminator, followed by a separate
shallow neural network (fully connected layers) to output the
mean and standard deviation vectors for the factored Gaus-
sian distribution approximation for q(y|x). The label infor-
mation is not disclosed to Dq, so the fully connected layers
takes input from the penultimate convolution layer which is
not yet concatenated with the label information y. In this
work, we treat Dq as a part of the discriminator, and refer to
the combined parameters of the discriminator-auxiliary net-
work also as Dmega. This is in fact a valid definition of param-
eter scope, as when Dq is being updated according to LDoE

(36), the parameters unique to the discriminator D are fed
with zero-valued gradients, hence no updates to D. Please
refer to Figure (2) for the discriminator-auxiliary network il-
lustration.

4.3 GAN-MI training objective

We optimize the generator and discriminator to maximize
the approximated MI lower bound between: i) the real
Ising states x ∼ pdata(x|y) and the corresponding real la-
bel y, i.e., maximize L(X ,Y ); ii) the conditional input label
yc ∼ pdata(y) and generated Ising states conditioned on yc,
i.e., maximize L(G(Z,Yc),Yc), where Z ∼ p(z) is the latent
noise vector with parametrized distribution such as the fac-
tored Gaussian.

For contrastive learning formulations (NCE, infoNCE,
WDM, and WPC), D(x,y) is a continuous score that is used
in both the conditional GAN objective (15 or 19) and as the
estimator function f (x,y). For the DoE formulation, D(x,y)
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Figure 1: SQA-GAN-Contrastive with noise-contrastive estimation. Note that during training, both congruent labels y+ and
incongruent labels y− are provided, and the discriminator is trained to correctly identify congruent data x,y ∼ p(x,y) from
incongruent data x,y∼ p(x)p(y) using NCE-based mutual information lower bound maximization methods.

Figure 2: SQA-GAN-Auxiliary with auxiliary network for DoE (variational lower bound) mutual information maximization.
The auxiliary network shares most convolution layers with the discriminator, and it outputs the mean (µ) and standard deviation
(σ ) for the approximated posterior distribution q(y|x). The label information is not disclosed to the auxiliary network.
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is only used for the GAN objective, and Dq(y|x) is used as
the posterior estimator function q(y|x).

Training the discriminator (D) or the auxiliary network
(Dq) with objective i enables D/Dq to encode the Ising sam-
ples into representations (high-level feature vectors) that con-
tain maximal information about y and training the generator
(G) with objective ii (keeping D fixed) allows such informa-
tion learnt by D to flow to G through back propagation and
increase the estimated MI lower bound between G(z,yc) and
yc ∼ pdata(y), guiding the generator to output samples “con-
gruent” to the conditional label (as learnt by the discrimina-
tor). Both D and G are updated iteratively according to the
GAN-MI training objective:

min
G

max
D

V (G,D)−LD̂(G(Z,Yc),Yc)+LD(X ,Y ), (37)

where LD(·) and LD̂(·) are one of the MI lower bound formu-
lations: LDoE , LNCE , Lin f oNCE , LWDM, or LWPC, modeled by
the discriminator (D) or auxiliary network (Dq). The middle
term, LD̂(G(z),Y ), signifies that we keep D/Dq fixed while
updating G with generated samples, and V (G,D) is the con-
ditional GAN (15) or conditional WGAN (19) objective.

Wasserstein or non-Wasserstein GAN Objective We
experiment with different combinations of conditional GAN
objectives (Wasserstein or non-Wasserstein) coupled with
MI lower bound maximization formulations. In the case
of Wasserstein conditional GAN objective, we enforce the
1-Lipschitz condition on the discriminator through spectral
normalization (SN) (ref Miyota). The following setups are
studied:

i) LDoE with Wasserstein conditional GAN (CGAN) ob-
jective.

ii) LDoE with non-Wasserstein CGAN objective.

iii) LNCE with non-Wasserstein CGAN objective (because
the Bernoulli estimator function requires the probabilistic
output to be between 0 and 1);

iv) Lin f oNCE with non-Wasserstein CGAN objective;

iv) LWDM with Wasserstein CGAN objective due to the
Kantorovich-Rubinstein dual form. 1-Lipschitz enforced on
the discriminator by spectral normalization (SN).

v) LWPC with Wasserstein CGAN objective with 1-
Lipschitz enforce on the discriminator by SN. This is equiva-
lent to an Lin f oNCE formulation with 1-Lipschitz discrimina-
tor.

Discriminator loss function The discriminator loss
function is taken directly from the GAN-MI objective (37),
where we wish to minimize:

J(D)
nonWasserstein =− [VnW (G,D)+LD(X ,Y )] =

−{Ex,y∼preal(x,y) [log D(x,y)]+

Ez∼pz,y∼preal(y) [log(1−D(G(z,y),y))]}−LD(X ,Y ) (38)

or, in the case of Wasserstein GAN objective:

J(D)
Wasserstein =− [VW (G,D)+LD(X ,Y )] =

−{Ex,y∼preal(x,y) [D(x,y)]−
Ez∼pz,y∼preal(y) [D(G(z,y),y)]}−LD(X ,Y ), (39)

where D is 1-Lipschiz.
The generator GAN loss needs special adjustment to pre-

vent diminishing gradients (ref GoodFellow). We go over the
non-saturating generator GAN loss and some additional loss
terms for the generator in the following section.

4.4 Non-saturating and additional generator loss func-
tions

We make minor adjustments to the training objective in (37)
to derive the exact loss function for the generator. Addition-
ally, we study the effects of additional loss function terms
across contemporary GAN literature in hopes of increasing
training efficiency and stability.

The major goal of the generator is to create realistic Ising
“cubes” given a target transverse field strength Γ. Two impli-
cations arise: i. the generator should confuse the discrimina-
tor by generating realistic data close to the real distribution
(GAN objective). ii. the generator should produce fake data
that are congruent with the given conditional label, i.e., the
target Γ (Mutual Information objective).

Heuristic non-Wasserstein GAN Loss To confuse the dis-
criminator, the generator tries to “weaken” the discrimina-
tor’s classification performance. However, the original for-
mulation of the generator loss (Goodfellow et al., 2014), i.e.,
minG 1−D(G(z)), does not perform especially well. This
is because the generator’s gradient vanishes when the dis-
criminator has high confidence of distinguishing generated
samples from the real samples, i.e., when D(G(z))→ 0. In-
stead, with the heuristically motivated game concept (Good-
fellow, 2016), the generator instead minimizes −D(G(z)).
The heuristic-game generator loss with conditional input y is
thus

L(G)
GAN heuristic =−Ez∼pz,y∼pdata [logD(G(z,y))], (40)

which, combined with the discriminator hinge loss, Eq.??,
follows the same hinge loss structure in (ref limYe, miyato,
multi-hinge Kavalerov) but is adjusted for conditional input
y. In the case of Wasserstein GAN, the generator does not
suffer from the diminishing gradient issue:

L(G)
Wasserstein =−Ez∼pz,y∼pdata [D(G(z,y))], (41)
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where D(·, ·) is 1-Lipschitz.

Feature Matching Feature matching is a technique that
prevents over-training the generator and increases the sta-
bility of the GAN (Salimans et al., 2016). It requires the
generator to produce samples which result in similar features
on an intermediate layer of the discriminator network as do
the real samples. Therefore, the generator loss considering
feature matching is formulated as:

L(G)
f eature matching =

∥∥∥Ex∼pdata(x) f (x)−Ez∼pz(z) f (G(z))
∥∥∥2

2
(42)

where f (x) is the activations of an intermediate layer of the
discriminator for a given sample x. In this study, f (x) is de-
fined by the ReLU (Nair and Hinton, 2010) activation on the
flattened output of the last convolutional (Conv) layer of the
discriminator network.

Average Magnetization Matching Our Ising cube data
are not naturally occurring, day-to-day images, but the aver-
age magnetization of an Ising cube summarizes the average
number of spins that are up/down (as marked by black/white
squares), which is a human observable feature. Liu and Ro-
drigues proposed using the magnetization per spin as an aux-
iliary state for the generator to match the real data at a given
Γ, which was shown to be effective for learning Ising spin
configurations:

L(G)
avg mag = E(x,y)∼pdata,z∼pz [(M(x)−M(G(z,y)))2], (43)

and we calculate the average magnetization across all Trotter
slices:

M(s) =
1

bτ

b

∑
i=1

τ

∑
l=1

sil . (44)

Finally, combining all parts together, the total generator
loss is:

J(G)
nonWasserstein =L(G)

GAN heuristic−LD̂(G(Z,Yc),Yc)+L(G)
f eature matching+L(G)

avg mag,

(45)
or, in the case of Wasserstein GAN:

J(G)
Wasserstein =L(G)

Wasserstein−LD̂(G(Z,Yc),Yc)+L(G)
f eature matching+L(G)

avg mag,

(46)
where the second term, LD̂(G(Z,Yc),Yc), is taken from the
GAN-MI objective (37), which is any MI lower bound max-
imization formulation keeping the discriminator (D) or the
auxiliary network (Dq) fixed.

4.5 SQA-GAN Algorithms

By introducing a conditional label input to the generator,
adding mutual information lower bound maximization mech-
anisms, and (where applicable), incorporating spectral nor-
malization in the discriminator layers to enforce the 1-
Lipschitz condition, the SQA-GAN architecture takes the
structure in Fig ??.

4.5.1 SQA-GAN Algorithm with DoE (variational lower
bound) MI formulation

For each training batch of m real data-label pairs, i.e.,
{(xi,yi), i ∈ 1, ...,m}, the detailed training procedure of the
SQA-GAN is as follows:

Step 0: Initialize the discriminator D, auxiliary network Dq

and the generator G with θD, θDq and θG, respectively,
where θD and θDq share most convolution layers.

Step 1: Feed the real batch of samples, {(xi,yi), i ∈
1, ...,m}, to the discriminator D, which outputs
[D(x1,y1), ...,D(xm,ym)]

T . The auxiliary network Dq

outputs Dq(real) = [Dq(y1|x1), ...,Dq(ym|xm)], which are
estimated posterior probabilities. Calculate LD(X ,Y )
with Dq using (36).

Step 2: Random noise vectors, z = {z1, . . . ,zm}, are sampled
from the noise prior pg(z). Each zi is paired with the
real continuous label yi and {(z1,y1), ...,(zm,ym)} is fed
to G to conditionally generate m synthetic samples, x̃ =

{x̃1, ..., x̃m}= {G(z1,y1), . . . ,G(zm,ym)}.

Step 3: Feed synthetic samples, {x̃1, ..., x̃m} to D. For each
x̃i, i ∈ {1, . . . ,m}, D outputs D(x̃i,yi), and the auxiliary
network Dq outputs Dq f ake = [Dq(yi|x̃i), i ∈ {1, . . . ,m}].
Calculate LD̂ with Dq f ake using (36).

Step 4: Compute the discriminator loss, J(D):

J(D)
nonWasserstein =

−{Ex,y∼preal(x,y) [log D(x,y)]+

Ez∼pz,y∼preal(y) [log(1−D(G(z,y),y)]}−LD(X ,Y )≈

− 1
m

m

∑
i=1

logD(xi,yi)−
1
m

m

∑
i=1

log(1−D(x̃i,yi))−

1
m

m

∑
i=1

logDq(yi|xi)

(47)
or, in the case of Wasserstein GAN:

J(D)
Wasserstein =

−{Ex,y∼preal(x,y) [D(x,y)]−
Ez∼pz,y∼preal(y) [D(G(z,y),y)]}−LD(X ,Y )≈

− 1
m

m

∑
i=1

D(xi,yi)+
1
m

m

∑
i=1

D(x̃i,yi)−

1
m

m

∑
i=1

logDq(yi|xi)

(48)
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Step 5: Compute the generator loss, J(G):

J(G)
nonWasserstein = L(G)

GAN heuristic−LD̂(G(Z,Yc),Yc)+

L(G)
f eature matching +L(G)

avg mag

=− 1
m

m

∑
i=1

logD̂(G(zi,yi),yi)−
1
m

m

∑
i=1

logD̂q(yi|G(zi,yi))

+ || 1
m

m

∑
i=1

f (xi)−
1
m

m

∑
i=1

f (G(zi,yi))||22

+
1
m

m

∑
i=1

(M(xi)−M(G(zi,yi)))
2,

(49)

or in the case of Wasserstein GAN:

J(G)
Wasserstein = L(G)

Wasserstein−LD̂(G(Z,Yc),Yc)+

L(G)
f eature matching +L(G)

avg mag

=− 1
m

m

∑
i=1

D̂(G(zi,yi),yi)−
1
m

m

∑
i=1

logD̂q(yi|G(zi,yi))

+ || 1
m

m

∑
i=1

f (xi)−
1
m

m

∑
i=1

f (G(zi,yi))||22

+
1
m

m

∑
i=1

(M(xi)−M(G(zi,yi)))
2,

Step 6: Optimize and update the network parameters θD and
θG, where η is the learning rate.

θD← θD−η ·∇θDJ(D) (50)

θDq ← θDq −η ·∇θDq
J(D) (51)

θG← θG−η ·∇θGJ(G) (52)

Repeat steps (1) to (8) until convergence is achieved or the
designated number of iterations is reached.

4.5.2 SQA-GAN Algorithm with MI Contrastive Learn-
ing

Step 0: Initialize the discriminator D and the generator G
with θD and θG, respectively.

Step 1: Feed the real batch of samples, {(xi,yi), i ∈
1, ...,m}, to the discriminator D, which outputs
[D(x1,y1), ...,D(xm,ym)]

T . Then for each xi, create in-
congruent pairs: {(xi,y j), i 6= j,∀i, j ∈ 1, ...,m}, for m
samples in a batch, there are be m(m− 1) incongruent
pairs. Use the congruent and incongruent pairs to cal-
culate the contrastive LD(X ,Y ).

Step 2: Random noise vectors, z = {z1, . . . ,zm}, are sampled
from the noise prior pg(z). Each zi is paired with the
real continuous label yi and {(z1,y1), ...,(zm,ym)} is fed
to G to conditionally generate m synthetic samples, x̃ =

{x̃1, ..., x̃m}= {G(z1,y1), . . . ,G(zm,ym)}.

Step 3: Feed synthetic samples, {x̃1, ..., x̃m} to D. For each
x̃i, i ∈ {1, . . . ,m}, D outputs D(x̃i,yi). Then for each x̃i,
create incongruent pairs: {(x̃i,y j), i 6= j,∀i, j ∈ 1, ...,m},
for m samples in a batch, there are be m(m− 1) incon-
gruent pairs. Use the congruent and incongruent pairs
to calculate the contrastive LD̂(X̃ ,Y ) = LD̂(G(Z,Y ),Y ).

Step 4: Compute the discriminator loss, J(D):

J(D)
nonWasserstein =

−{Ex,y∼preal(x,y) [log D(x,y)]+

Ez∼pz,y∼preal(y) [log(1−D(G(z,y),y)]}−LD(X ,Y )≈

− 1
m

m

∑
i=1

logD(xi,yi)−
1
m

m

∑
i=1

log(1−D(x̃i,yi))−

LD(X ,Y )
(53)

or, in the case of Wasserstein GAN:

J(D)
Wasserstein =

−{Ex,y∼preal(x,y) [D(x,y)]−
Ez∼pz,y∼preal(y) [D(G(z,y),y)]}−LD(X ,Y )≈

− 1
m

m

∑
i=1

D(xi,yi)+
1
m

m

∑
i=1

D(x̃i,yi)−

LD(X ,Y )

(54)

Step 5: Compute the generator loss, J(G):

J(G)
nonWasserstein = L(G)

GAN heuristic−LD̂(G(Z,Yc),Yc)+

L(G)
f eature matching +L(G)

avg mag

=− 1
m

m

∑
i=1

logD̂(G(zi,yi),yi)−LD̂(G(Z,Yc),Yc)

+ || 1
m

m

∑
i=1

f (xi)−
1
m

m

∑
i=1

f (G(zi,yi))||22

+
1
m

m

∑
i=1

(M(xi)−M(G(zi,yi)))
2,

(55)

or in the case of Wasserstein GAN:

J(G)
Wasserstein = L(G)

Wasserstein−LD̂(G(Z,Yc),Yc)+

L(G)
f eature matching +L(G)

avg mag

=− 1
m

m

∑
i=1

D̂(G(zi,yi),yi)−LD̂(G(Z,Yc),Yc)

+ || 1
m

m

∑
i=1

f (xi)−
1
m

m

∑
i=1

f (G(zi,yi))||22

+
1
m

m

∑
i=1

(M(xi)−M(G(zi,yi)))
2,

Step 6: Optimize and update the network parameters θD and
θG, where η is the learning rate.

θD← θD−η ·∇θDJ(D) (56)

θG← θG−η ·∇θGJ(G) (57)
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Repeat steps (1) to (8) until convergence is achieved or the
designated number of iterations is reached.

5 Experiments

5.1 Experimental objective

We try to create a quantum annealing simulator using GAN-
based methods. Specifically, we want to implicitly learn the
Ising spin configurations output by the SQA algorithm with
our proposed SQA-GAN and compare its data generation
performance with other GAN methods.

5.2 Dataset

We first build a quantum annealing simulator with the path-
integral SQA algorithm (ref). We then simulate a 32× 32
spin-glass system and generate the training data using a lin-
ear annealing schedule from Γ = 3.00 to Γ = 0.01. We simu-
late one sweep for each 0.001 increment of Γ and repeat the
process 50 times. There are 32× 32 = 1024 spins on each
Trotter slice. With 20 Trotter slices, each Ising spin configu-
ration (xi) has shape 32∗32∗20.

5.3 Evaluation metrics

There are three aspects to measuring each model’s genera-
tive capability: i. regressive evaluation by the discriminator.
ii. average magnetization distribution. iii. quality of visual
features.

Regressive Error The generator should not only produce
realistic samples, but also generate data that realistically
match the target transverse field strength Γ. Because the dis-
criminator is only trained on real samples for regression, its
predicative error on fake samples’ target labels indicates the
degree of dissimilarity between the real and generated data
distributions.

Average Magnetization Distribution The average mag-
netization distribution is an effective overview of an Ising
simulator’s statistical behavior. Besides comparing the av-
erage magnetization loss L(G)

avg mag, we also plot the aver-
age magnetization distribution histograms for more detailed
comparison.

Visual Quality Visual inspection is another important step
for checking mode collapse and the diversity of the generated
samples. In particular, we check whether the generated sam-
ples have repetitive patterns at different field strengths and
whether the generated samples are just direct copies of the
real data.

6 Experimental Results & Analysis

7 Conclusion

In this paper, we have demonstrated the use of GAN in
the field of simulated quantum annealing. Specifically, we
showed that the GAN framework combined with mutual in-
formation maximization objectives is a capable tool to cap-
ture the spin distributions at continuous transverse fields in
the (2+1)-dimensional path-integral MCMC ising model. We
incorporated and compared three MI maximization strate-
gies: Variational Mutual Information Maximization through
Difference of Entropies (DoE), Noise-contrastive Estima-
tion (NCE) based formulation, and Wasserstein Dependency
Measure (WDM) and conducted ablation studies to research
the effect of different MI lower bound maximization formu-
lations, as well as the Wasserstein GAN objective.

This study not only proves the capability of information-
theoretic and game-theoretic deep learning methods in mod-
eling complex quantum physics systems, but also showcases
the promising potential of GAN’s data generation capabil-
ities in learning and simulating stochastic systems. Excit-
ing future extensions include transfer learning or knowledge
distillation to propagate learnt knowledge from one quantum
simulator model to the other, or applying SQA-GAN to other
domains with stochastic models such as queuing network,
video timeseries models, language models, etc. SQA-GAN
can also be used for not just generating stochastic data, but
also detecting anomalies: it can detect intruders (character-
ized by random walks on a graph) in large-scale networks,
taking advantage of its immense capability of extracting es-
sential features from complex stochastic processes. Addi-
tionally, we would also like to combine mutual information
maximization methods with other learning frameworks other
than GAN, such as Graph Attention Network, etc.

8 Extension

Relationship and limitations of Wasserstein and Kull-
back-Leibler Why does mutual information have to be de-
fined as the KL divergence between p(x,y) and p(x)p(y)?
What are the advantages or disadvantages between the KL
MI definition and the Wasserstein Dependency Measure
(WDM)? Belavkin (2018) investigated the relationship be-
tween the Wasserstein metric and the Kullback-Leibler di-
vergence using variational and geometric principles. They
have found that the Wasserstein distance is equivalent to Op-
timal Channel (OCP) with one additional constraint fixing
the output measure, and therefore OCP with constraints on
the KL divergence gives a lower bound on the Wasserstein
metric. Inspired by Belavkin (2018), one can further study
the convergence or tightness of bound using hybrid formu-
lations such as the theoretic understanding of enforcing 1-
Lipschitz on the KL divergence MI (as in WPC), or even
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come with newer and more robust distribution divergence
measures based on information and game theory.

Mutual Information connection to deep metric learning
Moreover, Tschannen et al. (2020) showed that the success
of mutual information methods might have connections to
deep metric learning. They argue that studying MI estimator
through the lens of deep metric learning sheds more light on
the importance of appropriately choosing the negative sam-
ples, which is “indeed a critical component in deep metric
learning based on triplet losses”.

New paradigm? According to (66) in the Appendix,
which is replicated here:

N
M

Ep(x−)p(y−)log p(x−)p(y−)︸ ︷︷ ︸
≤0

+Ep(x+,y+)log p(x+)p(y+)︸ ︷︷ ︸
≤0

.

(58)

Lowering the ratio N
M actually decreases that gap between

supLcontrast and I(X ,Y ), meaning that one should have fewer
incongruent (negative) samples (N) and more congruent
(positive) samples (M). Will, then, overwhelming the con-
gruent samples with incongruent ones achieve a better perfor-
mance? The problem for the estimator function q(x,y) then
becomes “correctly detecting a few negative samples from
lots of positive samples”.

9 Appendix

9.1 Proof of unifying NCE formulation is lower bound
to Mutual Information

We show that the following formulation is a unifying expres-
sion of contemporary Noise-contrastive Estimation (NCE)
based Mutual Information (MI) lower bound maximization
objectives, and that it is the lower bound to the MI between
X ∼ p(x) and Y ∼ p(y):

Lcontrast =
1
M
Ep(s+)p(s−)logq(s+,s−), (59)

where s+ = {(x+,y+)i ∼ p(x,y), i = 1, ...,M} is a set of
congruent data-label pairs sampled from the joint distribu-
tion and s− = {(x−,y−) j ∼ p(x)p(y), j = 1, ...,N} is a set
of incongruent data-label pairs sampled from the product of
marginals.

Lemma 1 The two NCE-based objectives (original NCE
and infoNCE, which is also called Contrastive Predictive En-
coding) model q(s+,s−) as the likelihood of a set of Bernoulli
observations and the likelihood of a set of observations pa-
rameterized by the softmax function respectively.

Proof. For the case of original NCE, we let f (·) denote
any tractable function (such as modeled by a neural network)

that approximates the Bernoulli parameter (the probability
estimator that pair (x,y)i is from the congruent joint distri-
bution p(x,y), so 1− f ((x,y)) is the probability that (x,y)i is
from the product of marginals p(x)p(y)):

LNCE =
1
M
Ep(s+)p(s−)logq(s+,s−)

=
1
M
Ep(s+)p(s−)log(

M

∏
i=1

f ((x+,y+)i)
N

∏
j=1

(1− f ((x−,y−) j)))

=
1
M
Ep(s+)

M

∑
i=1

log( f ((x+,y+)i)+

1
M
Ep(s−)

N

∑
j=1

log(1− f ((x−,y−) j)))

= Ep(x,y)log( f ((x,y))+
N
M
Ep(x)p(y)log(1− f ((x,y)))),

(60)
where the last line is the original NCE objective (Gutmann
and Hyvärinen (2010), Tian et al. (2020)).

For the case of infoNCE, there is only one congruent par
for every N incongruent pairs, i.e., |s+| = 1, |s−| = N we let
f (·) denote any tractable function (such as modeled by a neu-
ral network) that approximates the logit function in softmax
expression exp( f ((x+,y+)))

exp( f ((x+,y+)))+∑
N
j=1 exp( f ((x−,y−) j))

∈ [0,1], which

can be thought as the likelihood (∈ [0,1]) of observing s+

and s−:

Lin f oNCE =
1
M
Ep(s+)p(s−)logq(s+,s−)

=
1
M
Ep(x+,y+)p(s−)log

exp( f ((x+,y+)))
exp( f ((x+,y+)))+∑

N
j=1 exp( f ((x−,y−) j))

=
1
M
Ep(x+,y+) f ((x+,y+))−

1
M
Ep(x+,y+)p(s−)log

[
exp( f ((x+,y+)))+

N

∑
j=1

exp( f ((x−,y−) j))

]
.

(61)

Lemma 2 The NCE expression, when maximized with re-
spect to the likelihood estimator function q(·) ∈ [0,1], is a
lower bound to I(X ,Y ):

sup
q(·)∈[0,1]

Lcontrast = sup
q(·)∈[0,1]

1
M
Ep(s+)p(s−)logq(s+,s−)≤ I(X ,Y )

(62)

Proof. Data-label pairs (x,y)i in congruent set
s+ = {(x+i ,y

+
i ), i ∈ {1, ...,M}} and incongruent set s− =

{(x−i ,y
−
i ), i ∈ {1, ...,N}} are independently obtained, which

means that the probability of observing s+ is p(s+) =

∏
M
i=1 p(x+i ,y

+
i ) and similarly, p(s−) = ∏

N
i=1 p(x−i )p(y−i ). By
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Gibb’s inequality, we have:

Lcontrast =
1
M
Ep(s+)p(s−)logq(s+,s−)

≤ 1
M
Ep(s+)p(s−)log p(s+)p(s−),

(63)

where the equality is achieved when q(s+,s−)= p(s+)p(s−).
We can then write:

sup
q(·)∈[0,1]

M ·Lcontrast = Ep(s+)p(s−)log p(s+)p(s−)

= E
∏

M
i=1 p(x+i ,y+i )∏

N
i=1 p(x−i )p(y−i )log

[
M

∏
i=1

p(x+i ,y
+
i )

N

∏
i=1

p(x−i )p(y−i )

]
= E

∏
M
i=1 p(x+i ,y+i )∏

N
i=1 p(x−i )p(y−i )

log

[
M

∏
i=1

p(x+i ,y
+
i )

p(x+i )p(y+i )

N

∏
i=1

p(x−i )p(y−i )
M

∏
i=1

p(x+i )p(y+i )

]

= E
∏

M
i=1 p(x+i ,y+i )∏

N
i=1 p(x−i )p(y−i )

[ M

∑
i=1

log
p(x+i ,y

+
i )

p(x+i )p(y+i )

+
N

∑
i=1

log
[
p(x−i )p(y−i )

]
+

M

∑
i=1

log[p(x+i )p(y+i )]
]

= E
∏

M
i=1 p(x+i ,y+i )

M

∑
i=1

log
p(x+i ,y

+
i )

p(x+i )p(y+i )
+

E
∏

N
i=1 p(x−i )p(y−i )

N

∑
i=1

log[p(x−i )p(y−i )]+

E
∏

M
i=1 p(x+i ,y+i )

M

∑
i=1

log[p(x+i )p(y+i )]

=
M

∑
i=1

E
∏

M
i=1 p(x+i ,y+i )log

p(x+i ,y
+
i )

p(x+i )p(y+i )
+

N

∑
i=1

E
∏

N
i=1 p(x−i )p(y−i )log[p(x−i )p(y−i )]+

M

∑
i=1

E
∏

M
i=1 p(x+i ,y+i )log[p(x+i )p(y+i )]

= MEp(x+,y+)log
p(x+,y+)

p(x+i )p(y+i )
+NEp(x−)p(y−)log[p(x−)p(y−)]+

MEp(x+,y+)log[p(x+)p(y+)]

(64)
Then divide both sides by M, we have

sup
q(·)∈[0,1]

Lcontrast = Ep(x+,y+)log
p(x+,y+)

p(x+i )p(y+i )︸ ︷︷ ︸
DKL(p(x,y)‖p(x)p(y))=I(X ,Y )

+

N
M

Ep(x−)p(y−)log[p(x−)p(y−)]︸ ︷︷ ︸
≤0

+

Ep(x+,y+)log[p(x+)p(y+)]︸ ︷︷ ︸
≤0

≤ I(X ,Y ). (65)

This decomposition provides a great way to investigate the
MI lower bound tightness by investigating the last two terms:

N
M

Ep(x−)p(y−)log p(x−)p(y−)︸ ︷︷ ︸
≤0

+Ep(x+,y+)log p(x+)p(y+)︸ ︷︷ ︸
≤0

(66)
which, when maximized, gives the tightest lower bound

of Lcontrast on I(X ,Y ). Upon further inspection, one finds
that the first expectation of (66) is already at its max (due
to Gibb’s inequality), and that decreasing the ratio N

M will
tighten the bound. The second term is at its max when
p(x+,y+) = p(x+)p(y+), which means that X and Y are in-
dependent.

9.2 Network configurations

Discriminator Architecture for Auxiliary DoE The dis-
criminator input takes shape 32∗32∗20 (height, width, num-
ber of trotter slices), we use different convolution filter sizes
and batch normalization layers after each (ReLU activated)
dense layer. However, no batch normalization is used for the
first dense layer as suggested by (ref Radford Unsupervised
Representation). The penultimate convolution layer output
is concatenated with the label value y before being fed to the
last convolution layer. The feature map output by the last
convolution layer is flattened and fed into a fully connected
dense layer with 1 output neuron for D(x,y). Meanwhile,
the penultimate convolution layer (before concatenated with
label information y is fed into a shallow NN (the auxiliary
network) to output two scalars: the mean and standard devi-
ation for the approximated posterior distribution q(y|x). In
the case of Wasserstein GAN objective, the discriminator is
1-Lipschitz enforced my spectral normalization.

The Discriminator-auxiliary network architecture is illus-
trated in Table.3.

Discriminator Architecture for Contrastive Learning
The discriminator for MI contrastive learning formulations
does not require an auxiliary network. it is identical to the
Discriminator-auxiliary network with auxiliary network re-
moved. The penultimate layer output can be concatenated
with congruent label y+ or incongruent label y− as per the
contrastive learning formulations. In the case of Wasserstein
GAN or Wasserstein Dependency Measure objectives, the
discriminator is 1-Lipschitz enforced my spectral normaliza-
tion.

The Discriminator network architecture for contrastive
learning is illustrated in Table.2.

Generator Architecture The noise vector z and the con-
ditional label y are first processed by two separate densely-
connected layers and then reshaped and concatenated for
subsequent upconvolution operations. No batch normaliza-
tion is used for the last upconvolution layer per (Radford
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Table 1: Configuration of the SQA-GAN generator

Layer Activation Shape Note
Input - (N, 100) Noise vector, z

FC-layer ReLU (N, 8192) 8192=8*8*128
Reshape - (N, 8, 8, 128)

Layer Activation Shape Note
Input - (N, 1) Condition Label, yc

FC-layer ReLU (N, 1024) 1024=32*32*1
Reshape - (N, 8, 8, 1)

Layer Filter size (#) Activation Shape Notes
Concat - - (N, 8, 8, 129) Concatenate two feature maps above

UpConv 3×3 (128) ReLU (N, 16, 16, 64) Stride = 2
BatchNorm - - (N, 16, 16, 64) Momentum = 0.8

UpConv 3×3 (64) ReLU (N, 32, 32, 32) Stride = 2
BatchNorm - - (N, 32, 32, 32) Momentum = 0.8

UpConv 3×3 (3) ReLU (N, 32, 32, 20) Stride = 1, fake sample G(z,yc)

Table 2: Configurations of the SQA-GAN-Contrastive discriminator

Layer Filter size (#) Activation Data Shape Notes (α: −ive slope coef. in Leaky ReLU)
Input - - (N, 32, 32, 20) Input Ising state of size 32×32×20
Conv 3×3 (32) Leaky ReLU (N, 16, 16, 32) Stride = 2, α = 0.2

Dropout - - (N, 16, 16, 32) Dropout rate = 0.25
Conv 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 2, α = 0.2

BatchNorm - - (N, 8, 8, 64) Momentum = 0.8
Dropout - - (N, 8, 8, 64) Dropout rate = 0.25

Conv 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 1, α = 0.2
Concat - - (N, 8, 8, 65) concatenated with 8×8×1 tensor of label value y
Flatten - - (N, 4160) 4160 = 8×8×65

Fc-layer - Softmax (N, 1) D(x,y)

Table 3: Configurations of the SQA-GAN-Auxiliary discriminator

Layer Filter size (#) Activation Data Shape Notes (α: −ive slope coef. in Leaky ReLU)
Input - - (N, 32, 32, 20) Input Ising state of size 32×32×20

Conv 1 3×3 (32) Leaky ReLU (N, 16, 16, 32) Stride = 2, α = 0.2
Dropout - - (N, 16, 16, 32) Dropout rate = 0.25
Conv 2 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 2, α = 0.2

BatchNorm - - (N, 8, 8, 64) Momentum = 0.8
Dropout - - (N, 8, 8, 64) Dropout rate = 0.25
Conv 3 3×3 (64) Leaky ReLU (N, 8, 8, 64) Stride = 1, α = 0.2

FC-batchnorm-lReLU-FC - - (N, 2) Auxiliary network’s output (mean, std) for q(y|x)
Concat - - (N, 8, 8, 65) Conv 3 concatenated with 8×8×1 tensor of label y
Flatten - - (N, 4160) 4160 = 8×8×65

Fc-layer 2 - Softmax (N, 1) D(x,y)



Information Maximization and Contrastive Learning Generative Adversarial Network for Simulated Quantum Annealing 17

et al. (2015)). The Generator architecture is illustrated in
Table.1.
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